| 研究生: |
陳昱全 Chen, Yu-Chuan |
|---|---|
| 論文名稱: |
含浸法摻入石墨烯量子點於金屬有機骨架以提升導電性及電化學感測活性 Impregnation of Graphene Quantum Dots into a Metal–Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 導電金屬有機骨架 、施體-受體電子傳輸 、電催化 、電化學感測 、亞硝酸鹽氧化 、以鋯為基底之金屬有機骨架 |
| 外文關鍵詞: | conductive MOF, donor−acceptor charge transfer, electrocatalysis, electrochemical sensor, mesoporous, nitrite oxidation, zirconium-based MOF |
| 相關次數: | 點閱:139 下載:48 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬有機骨架(MOFs),因為結構多樣性、功能可調節性、較高的比表面積和永久的孔隙率,在過去的二十年中引起了相當大的關注。而MOFs目前已被廣泛應用在各種領域,例如氣體儲存、催化、化學分離和化學感測器。但是大多數MOFs在水相環境中有著較差的穩定性和較低導電度,這也限制了它們在許多應用中的發展。然而以鋯為基底MOF(Zr-MOF)通常在水相中穩定,因此近年來已被廣泛使用在許多應用上,但是導電Zr-MOF的例子仍然非常少見。
石墨烯量子點(GQDs)為奈米片狀石墨,具有高穩定性、好的生物相容性、優異的分散性和容易調控尺寸的優勢,透過調控尺寸造成量子侷限效應以調控其電子結構。本研究藉由含浸法將平均大小為3.1奈米GQDs摻入於以卟啉及鋯為基底的中孔金屬有機骨架中,以呈現施體-受體電子傳遞從石墨烯量子點傳遞到有機連接器卟啉。由實驗結果可知,製備出的複合材料導電性提升了超過一百倍且還具有一半的孔洞性。而有機連接器卟啉可作為電觸媒用於感測亞硝酸鹽,比較安裝GQD前後的金屬有機骨架之電化學感測表現,安裝GQD後其電化學感測效果更為優異。
Graphene quantum dots (GQD) with an average size of 3.1 nm were incorporated into a mesoporous porphyrinic zirconium-based metal–organic framework (MOF) by direct impregnation to render the donor–acceptor charge transfer from GQDs to porphyrinic linkers. The hybrid material still possesses around half porosity of the pristine MOF and shows a 100-fold higher electrical conductivity compared to that of the parent MOF. By utilizing the porphyrinic linkers as catalytically active units, the GQD-MOF material exhibits a better electrochemical sensing activity toward nitrite in aqueous solutions compared to both the pristine MOF and GQD. The linear range of the hybrid material for the determination of nitrite is 40-18000 μM. and the limit of detection is 6.4 μM.
[1] G. Xiang, Y. Wang, H. Zhang, H. Fan, L. Fan, L. He, X. Jiang, W. Zhao, Carbon Dots based Dual-Emission Silica Nanoparticles as Ratiometric Fluorescent Probe for Nitrite Determination in Food Samples. Food Chem., 260, 13-18, 2018
[2] V. Fabregat, M.I. Burguete, F. Galindo, S.V. Luis, Influence of Polymer Composition on the Sensitivity towards Nitrite and Nitric Oxide of Colorimetric Disposable Test Strips. Environ. Sci. Pollut. R., 24, 3448-3455, 2017
[3] H. Zhang, S. Qi, Y. Dong, X. Chen, Y. Xu, Y. Ma, X. Chen, A Sensitive Colorimetric Method for the Determination of Nitrite in Water Supplies, Meat and Dairy Products Using Ionic Liquid-Modified Methyl Red as a Colour Reagent. Food Chem., 151, 429-434, 2014
[4] H. Suzuki, K. Iijima, A. Moriya, K. McElroy, G. Scobie, V. Fyfe, K.E.L. McColl, Conditions for Acid Catalysed Luminal Nitrosation are Maximal at the Gastric Cardia. Gut, 52, 1095-1101, 2003
[5] Q.H. Wang, L.J. Yu, Y. Liu, L. Lin, R.G. Lu, J.P. Zhu, L. He, Z.L. Lu, Methods for the Detection and Determination of Nitrite and Nitrate: A Review. Talanta, 165, 709-720, 2017
[6] C.C. Rosa, H.J. Cruz, M. Vidal, A.G. Oliva, Optical Biosensor Based on Nitrite Reductase Immobilised in Controlled Pore Glass. Biosens. Bioelectron., 17, 45-52, 2002
[7] K. Dagci, M. Alanyalioglu, Preparation of Free-Standing and Flexible Graphene/Ag Nanoparticles/Poly(pyronin Y) Hybrid Paper Electrode for Amperometric Determination of Nitrite. ACS Appl. Mater. Interfaces, 8, 2713-2722, 2016
[8] J. Nam, I.-B. Jung, B. Kim, S.-M. Lee, S.-E. Kim, K.-N. Lee, D.-S. Shin, A Colorimetric Hydrogel Biosensor for Rapid Detection of Nitrite Ions. Sens. Actuators B Chem., 270, 112-118, 2018
[9] X. Wang, E. Adams, A. Van Schepdael, A Fast and Sensitive Method for the Determination of Nitrite in Human Plasma by Capillary Electrophoresis with Fluorescence Detection. Talanta, 97, 142-144, 2012
[10] E. Nagababu, J.M. Rifkind, Measurement of Plasma Nitrite by Chemiluminescence. Methods Mol. Biol., 610, 41-49, 2010
[11] M. Akyuz, S. Ata, Determination of Low Level Nitrite and Nitrate in Biological, Food and Environmental Samples by Gas Chromatography-Mass Spectrometry and Liquid Chromatography with Fluorescence Detection. Talanta, 79, 900-904, 2009
[12] C.-W. Kung, T.-H. Chang, L.-Y. Chou, J.T. Hupp, O.K. Farha, K.-C. Ho, Porphyrin-Based Metal–Organic Framework Thin Films for Electrochemical Nitrite Detection. Electrochem. commun., 58, 51-56, 2015
[13] M. Gattrell, D.W. Kirk, A Study of Electrode Passivation during Aqueous Phenol Electrolysis. J. Electrochem. Soc., 140, 903-911, 1993
[14] B.C.H. Steele, A. Heinzel, Materials for Fuel-Cell Technologies. Nature, 414, 345-352, 2001
[15] P. Simon, Y. Gogotsi, Materials for Electrochemical Capacitors. Nat. Mater., 7, 845-854, 2008
[16] S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catal., 6, 8069-8097, 2016
[17] P.M. Beaujuge, J.R. Reynolds, Color Control in Pi-Conjugated Organic Polymers for Use in Electrochromic Devices. Chem. Rev., 110, 268-320, 2010
[18] D.W. Hwang, S. Lee, M. Seo, T.D. Chung, Recent Advances in Electrochemical Non-Enzymatic Glucose Sensors - A Review. Anal. Chim. Acta, 1033, 1-34, 2018
[19] U. Guth, W. Vonau, J. Zosel, Recent Developments in Electrochemical Sensor Application and Technology-A Review. Meas. Sci. Technol., 20, 042002, 2009
[20] E. Bakker, Y. Qin, Electrochemical Sensors. Anal. Chem., 78, 3965-3684, 2006
[21] A. Shrivastava, V. Gupta, Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chron. Young Sci., 2, 21-25, 2011
[22] E. Bakker, E. Pretsch, Potentiometric Sensors for Trace-Level Analysis. Trends Analyt. Chem., 24, 199-207, 2005
[23] C. Malitesta, F. Palmisano, L. Torsi, P.G. Zambonin, Glucose Fast-Response Amperometric Sensor Based on Glucose-Oxidase Immobilized in an Electropolymerized Poly(Ortho-Phenylenediamine) Film. Anal. Chem., 62, 2735-2740, 1990
[24] Z.O. Uygun, Y. Dilgin, A Novel Impedimetric Sensor Based on Molecularly Imprinted Polypyrrole Modified Pencil Graphite Electrode for Trace Level Determination of Chlorpyrifos. Sens. Actuators B Chem., 188, 78-84, 2013
[25] A.J.F. Bard, L. R., Electrochemical Methods, Fundamentals and Applications John Wiley & Sons, New York, 2001.
[26] R.A.D. de Faria, H. Iden, L.G.D. Heneine, T. Matencio, Y. Messaddeq, Non-Enzymatic Impedimetric Sensor Based on 3-Aminophenylboronic Acid Functionalized Screen-Printed Carbon Electrode for Highly Sensitive Glucose Detection. Sensors-Basel, 19, 1686, 2019
[27] T.P. Nguya, T. Van Phi, D.T.N. Tram, K. Eerselsb, P. Wagnerb, T.T.N. Lien, Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors. Sensor Actuat B-Chem, 246, 461-470, 2017
[28] M.A. Ali, H.W. Jiang, N.K. Mahal, R.J. Weber, R. Kumar, M.J. Castellano, L. Dong, Microfluidic Impedimetric Sensor for Soil Nitrate Detection Using Graphene Oxide and Conductive Nanofibers Enabled Sensing Interface. Sens. Actuators B Chem., 239, 1289-1299, 2017
[29] M.F. Barroso, M.A. Luna, J.S.F. Tabares, C. Delerue-Matos, N.M. Correa, F. Moyano, P.G. Molina, Gold Nanoparticles Covalently Assembled onto Vesicle Structures as Possible Biosensing Platform. Beilstein J. Nanotechnol., 7, 655-663, 2016
[30] P.K. Rastogi, V. Ganesan, S. Krishnamoorthi, A Promising Electrochemical Sensing Platform Based on a Silver Nanoparticles Decorated Copolymer for Sensitive Nitrite Determination. J. Mater. Chem. A, 2, 933-943, 2014
[31] F.F. Liang, M.Z. Jia, J.B. Hu, Pt-Implanted Indium Tin oxide Electrodes and Their Amperometric Sensor Applications for Nitrite and Hydrogen Peroxide. Electrochim. Acta, 75, 414-419, 2012
[32] W.Y. Ko, W.H. Chen, C.Y. Cheng, K.J. Lin, Highly Electrocatalytic Reduction of Nitrite Ions on a Copper Nanoparticles Thin Film. Sens. Actuators B Chem., 137, 437-441, 2009
[33] J.H. Yang, H.T. Yang, S.H. Liu, L.Q. Mao, Microwave-Assisted Synthesis Graphite-Supported Pd Nanoparticles for Detection of Nitrite. Sens. Actuators B Chem., 220, 652-658, 2015
[34] D. Chen, J.J. Jiang, X.Z. Du, Electrocatalytic Oxidation of Nitrite Using Metal-Free Nitrogen-Doped Reduced Graphene Oxide Nanosheets for Sensitive Detection. Talanta, 155, 329-335, 2016
[35] A. Afkhami, F. Soltani-Felehgari, T. Madrakian, H. Ghaedi, Surface Decoration of Multi-Walled Carbon Nanotubes Modified Carbon Paste Electrode with Gold Nanoparticles for Electro-Oxidation and Sensitive Determination of Nitrite. Biosens. Bioelectron., 51, 379-385, 2014
[36] S.F. Li, J.Y. Qu, Y. Wang, J.H. Qu, H.J. Wang, A Novel Electrochemical Sensor Based on Carbon Nanoparticle Composite Films for the Determination of Nitrite and Hydrogen Peroxide. Anal. Methods, 8, 4204-4210, 2016
[37] L.H. Chen, X. Liu, C.G. Wang, S.L. Lv, C.F. Chen, Amperometric Nitrite Sensor Based on a Glassy Carbon Electrode Modified with Electrodeposited Poly(3,4-ethylenedioxythiophene) Doped with a Polyacenic Semiconductor. Microchim. Acta, 184, 2073-2079, 2017
[38] X.L. Zhang, J.X. Wang, Z. Wang, S.C. Wang, Improvement of Amperometric Sensor Used for Determination of Nitrate with Polypyrrole Nanowires Modified Electrode. Sensors-Basel, 5, 580-593, 2005
[39] C. Li, B. Guo, X.M. Guo, F. Wang, The Electrochemical Sensor Based on Electrochemical Oxidation of Nitrite on Metalloporphyrin-Graphene Modified Glassy Carbon Electrode. RSC Adv., 6, 90480-90488, 2016
[40] D.L. Ning, H.F. Zhang, J.B. Zheng, Electrochemical Sensor for Sensitive Determination of Nitrite Based on The PAMAM Dendrimer-Stabilized Silver Nanoparticles. J. Electroanal. Chem., 717, 29-33, 2014
[41] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, 1230444, 2013
[42] G. Ferey, Hybrid Porous Solids: Past, Present, Future. Chem. Soc. Rev., 37, 191-214, 2008
[43] A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, Thermal and Mechanical Stabilities of Metal–Organic Frameworks. Nat. Rev. Mater., 1, 15018, 2016
[44] X.Y. Chen, B. Zhao, W. Shi, J. Xia, P. Cheng, D.Z. Liao, S.P. Yan, Z.H. Jiang, Microporous Metal-Organic Frameworks Built on a Ln3 Cluster as a Six-Connecting Node. Chem. Mater., 17, 2866-2874, 2005
[45] D.X. Wang, H.Y. He, X.H. Chen, S.Y. Feng, Y.Z. Niu, D.F. Sun, A 3D Porous Metal-Organic Framework Constructed of 1D Zigzag and Helical Chains Exhibiting Selective Anion Exchange. Crystengcomm, 12, 1041-1043, 2010
[46] J.Y. Wu, T.C. Chao, M.S. Zhong, Influence of Counteranions on the Structural Modulation of Silver-Di(3-pyridylmethyl)amine Coordination Polymers. Cryst. Growth Des., 13, 2953-2964, 2013
[47] S.L. Qiu, G.S. Zhu, Molecular Engineering for Synthesizing Novel Structures of Metal-Organic Frameworks with Multifunctional Properties. Coord. Chem. Rev., 253, 2891-2911, 2009
[48] Y.F. Zhang, X.J. Bo, A. Nsabimana, C. Han, M. Li, L.P. Guo, Electrocatalytically Active Cobalt-Based Metal-Organic Framework with Incorporated Macroporous Carbon Composite for Electrochemical Applications. J. Mater. Chem. A, 3, 732-738, 2015
[49] W.J. Phang, W.R. Lee, K. Yoo, D.W. Ryu, B. Kim, C.S. Hong, pH-Dependent Proton Conducting Behavior in a Metal-Organic Framework Material. Angew. Chem. Int. Ed., 53, 8383-8387, 2014
[50] S.H. Jhung, J.W. Yoon, J.S. Hwang, A.K. Cheetham, J.S. Chang, Facile Synthesis of Nanoporous Nickel Phosphates without Organic Templates under Microwave Irradiation. Chem. Mater., 17, 4455-4460, 2005
[51] S.H. Jhung, J.S. Chang, J.S. Hwang, S.E. Park, Selective Formation of SAPO-5 and SAPO-34 Molecular Sieves with Microwave Irradiation and Hydrothermal Heating. Microporous Mesoporous Mater., 64, 33-39, 2003
[52] Y.K. Hwang, J.S. Chang, S.E. Park, D.S. Kim, Y.U. Kwon, S.H. Jhung, J.S. Hwang, M.S. Park, Microwave Fabrication of MFI Zeolite Crystals with a Fibrous Morphology and Their Applications. Angew. Chem. Int. Ed., 44, 556-560, 2005
[53] Z. Ni, R.I. Masel, Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. J. Am. Chem. Soc., 128, 12394-12395, 2006
[54] R. Sabouni, H. Kazemian, S. Rohani, Microwave Synthesis of the CPM-5 Metal Organic Framework. Chem. Eng. Technol., 35, 1085-1092, 2012
[55] U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, Metal-Organic Frameworks - Prospective Industrial Applications. J. Mater. Chem., 16, 626-636, 2006
[56] T.R.C. Van Assche, G. Desmet, R. Ameloot, D.E. De Vos, H. Terryn, J.F.M. Denayer, Electrochemical Synthesis of Thin HKUST-1 Layers on Copper Mesh. Microporous Mesoporous Mater., 158, 209-213, 2012
[57] N. Campagnol, E.R. Souza, D.E. De Vos, K. Binnemans, J. Fransaer, Luminescent Terbium-Containing Metal-Organic Framework Films: New Approaches for the Electrochemical Synthesis and Application as Detectors for Explosives. Chem. Commun., 50, 12545-12547, 2014
[58] A. Pichon, A. Lazuen-Garay, S.L. James, Solvent-Free Synthesis of a Microporous Metal-Organic Framework. Crystengcomm, 8, 211-214, 2006
[59] S.L. James, C.J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K.D.M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A.G. Orpen, I.P. Parkin, W.C. Shearouse, J.W. Steed, D.C. Waddell, Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc. Rev., 41, 413-447, 2012
[60] M.Y. Masoomi, A. Morsali, P.C. Junk, Rapid Mechanochemical Synthesis of Two new Cd(II)-Based Metal-Organic Frameworks with High Removal Efficiency of Congo Red. Crystengcomm, 17, 686-692, 2015
[61] A. Morsali, H.H. Monfared, A. Morsali, C. Janiak, Ultrasonic Irradiation Assisted Syntheses of One-Dimensional Di(azido)-Dipyridylamine Cu(II) Coordination Polymer Nanoparticles. Ultrason. Sonochem., 23, 208-211, 2015
[62] D.W. Jung, D.A. Yang, J. Kim, J. Kim, W.S. Ahn, Facile Synthesis of MOF-177 by a Sonochemical Method Using 1-Methyl-2-Pyrrolidinone as a Solvent. Dalton Trans., 39, 2883-2887, 2010
[63] W.J. Son, J. Kim, J. Kim, W.S. Ahn, Sonochemical Synthesis of MOF-5. Chem. Commun., 6336-6338, 2008
[64] E. Haque, N.A. Khan, J.H. Park, S.H. Jhung, Synthesis of a Metal-Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study. Chem. Eur. J., 16, 1046-1052, 2010
[65] L.N. Jin, Q. Liu, W.Y. Sun, An Introduction to Synthesis and Application of Nanoscale Metal-Carboxylate Coordination Polymers. Crystengcomm, 16, 3816-3828, 2014
[66] M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, M. Khatami, A Review on Metal-Organic Frameworks: Synthesis and Applications. Trac-Trend Anal. Chem., 118, 401-425, 2019
[67] S.M. Cohen, Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks. Chem. Rev., 112, 970-1000, 2012
[68] T. Islamoglu, S. Goswami, Z. Li, A.J. Howarth, O.K. Farha, J.T. Hupp, Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications. Acc. Chem. Res., 50, 805-813, 2017
[69] I.M. Honicke, I. Senkovska, V. Bon, I.A. Baburin, N. Bonisch, S. Raschke, J.D. Evans, S. Kaskel, Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. Angew. Chem. Int. Ed., 57, 13780-13783, 2018
[70] Y. Peng, V. Krungleviciute, I. Eryazici, J.T. Hupp, O.K. Farha, T. Yildirim, Methane Storage in Metal-Organic Frameworks: Current Records, Surprise Findings, and Challenges. J. Am. Chem. Soc., 135, 11887-11894, 2013
[71] T.M. McDonald, J.A. Mason, X.Q. Kong, E.D. Bloch, D. Gygi, A. Dani, V. Crocella, F. Giordanino, S.O. Odoh, W.S. Drisdell, B. Vlaisavljevich, A.L. Dzubak, R. Poloni, S.K. Schnell, N. Planas, K. Lee, T. Pascal, L.W.F. Wan, D. Prendergast, J.B. Neaton, B. Smit, J.B. Kortright, L. Gagliardi, S. Bordiga, J.A. Reimer, J.R. Long, Cooperative Insertion of CO2 in Diamine-Appended Metal-Organic Frameworks. Nature, 519, 303-308, 2015
[72] P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, Metal-Organic Frameworks as Efficient Materials for Drug Delivery. Angew. Chem. Int. Ed., 45, 5974-5978, 2006
[73] X.L. Cui, K.J. Chen, H.B. Xing, Q.W. Yang, R. Krishna, Z.B. Bao, H. Wu, W. Zhou, X.L. Dong, Y. Han, B. Li, Q.L. Ren, M.J. Zaworotko, B.L. Chen, Pore Chemistry and Size Control in Hybrid Porous Materials for Acetylene Capture from Ethylene. Science, 353, 141-144, 2016
[74] L. Meng, Q. Cheng, C. Kim, W.Y. Gao, L. Wojtas, Y.S. Chen, M.J. Zaworotko, X.P. Zhang, S. Ma, Crystal Engineering of a Microporous, Catalytically Active fcu Topology MOF Using a Custom-Designed Metalloporphyrin Linker. Angew. Chem. Int. Ed., 51, 10082-10085, 2012
[75] D. Liu, K. Lu, C. Poon, W. Lin, Metal-Organic Frameworks as Sensory Materials and Imaging Agents. Inorg. Chem., 53, 1916-1924, 2014
[76] L. Cui, J. Wu, J. Li, H. Ju, Electrochemical Sensor for Lead Cation Sensitized with a DNA Functionalized Porphyrinic Metal-Organic Framework. Anal. Chem., 87, 10635-10641, 2015
[77] X. Lian, B. Yan, Phosphonate MOFs Composite as Off-On Fluorescent Sensor for Detecting Purine Metabolite Uric Acid and Diagnosing Hyperuricuria. Inorg. Chem., 56, 6802-6808, 2017
[78] S. Takaishi, M. Hosoda, T. Kajiwara, H. Miyasaka, M. Yamashita, Y. Nakanishi, Y. Kitagawa, K. Yamaguchi, A. Kobayashi, H. Kitagawa, Electroconductive Porous Coordination Polymer Cu[Cu(pdt)(2)] Composed of Donor and Acceptor Building Units. Inorganic Chemistry, 48, 9048-9050, 2009
[79] G. Givaja, P. Amo-Ochoa, C.J. Gomez-Garcia, F. Zamora, Electrical Conductive Coordination Polymers. Chem. Soc. Rev., 41, 115-147, 2012
[80] S.S. Park, E.R. Hontz, L. Sun, C.H. Hendon, A. Walsh, T. Van Voorhis, M. Dinca, Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal-Organic Frameworks. J. Am. Chem. Soc., 137, 1774-1777, 2015
[81] D. Sheberla, L. Sun, M.A. Blood-Forsythe, S. Er, C.R. Wade, C.K. Brozek, A. Aspuru-Guzik, M. Dinca, High Electrical Conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a Semiconducting Metal-Organic Graphene Analogue. J. Am. Chem. Soc., 136, 8859-62, 2014
[82] T.C. Wang, I. Hod, C.O. Audu, N.A. Vermeulen, S.T. Nguyen, O.K. Farha, J.T. Hupp, Rendering High Surface Area, Mesoporous Metal-Organic Frameworks Electronically Conductive. ACS Appl. Mater. Interfaces, 9, 12584-12591, 2017
[83] B. Le Ouay, M. Boudot, T. Kitao, T. Yanagida, S. Kitagawa, T. Uemura, Nanostructuration of PEDOT in Porous Coordination Polymers for Tunable Porosity and Conductivity. J. Am. Chem. Soc., 138, 10088-10091, 2016
[84] L. Sun, T. Miyakai, S. Seki, M. Dinca, Mn2(2,5-Disulfhydrylbenzene-1,4-Dicarboxylate): a Microporous Metal-Organic Framework with Infinite (-Mn-S-)Infinity Chains and High Intrinsic Charge Mobility. J. Am. Chem. Soc., 135, 8185-8188, 2013
[85] I. Hod, W. Bury, D.M. Gardner, P. Deria, V. Roznyatovskiy, M.R. Wasielewski, O.K. Farha, J.T. Hupp, Bias-Switchable Permselectivity and Redox Catalytic Activity of a Ferrocene-Functionalized, Thin-Film Metal-Organic Framework Compound. J. Phys. Chem. Lett., 6, 586-591, 2015
[86] A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila, P. Haney, R.A. Kinney, V. Szalai, F. El Gabaly, H.P. Yoon, F. Leonard, M.D. Allendorf, Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices. Science, 343, 66-69, 2014
[87] S. Goswami, D. Ray, K.I. Otake, C.W. Kung, S.J. Garibay, T. Islamoglu, A. Atilgan, Y. Cui, C.J. Cramer, O.K. Farha, J.T. Hupp, A Porous, Electrically Conductive Hexa-Zirconium(IV) Metal-Organic Framework. Chem. Sci., 9, 4477-4482, 2018
[88] Y.V. Kaneti, J. Tang, R.R. Salunkhe, X.C. Jiang, A.B. Yu, K.C.W. Wu, Y. Yamauchi, Nanoarchitectured Design of Porous Materials and Nanocomposites from Metal-Organic Frameworks. Adv. Mater., 29, 1604898, 2017
[89] K. Chen, C.D. Wu, Transformation of Metal-Organic Frameworks into Stable Organic Frameworks with Inherited Skeletons and Catalytic Properties. Angew. Chem. Int. Ed., 58, 8119-8123, 2019
[90] S.Y. Lin, P.M. Usov, A.J. Morris, The Role of Redox Hopping in Metal-Organic Framework Electrocatalysis. Chem. Comm., 54, 6965-6974, 2018
[91] C.W. Kung, J.E. Mondloch, T.C. Wang, W. Bury, W. Hoffeditz, B.M. Klahr, R.C. Klet, M.J. Pellin, O.K. Farha, J.T. Hupp, Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation. ACS Appl. Mater. Interfaces, 7, 28223-28230, 2015
[92] I. Hod, O.K. Farha, J.T. Hupp, Modulating the Rate of Charge Transport in a Metal-Organic Framework Thin Film Using Host: Guest Chemistry. Chem. Comm., 52, 1705-1708, 2016
[93] C.R. Wade, M.Y. Li, M. Dinca, Facile Deposition of Multicolored Electrochromic Metal-Organic Framework Thin Films. Angew. Chem. Int. Ed., 52, 13377-13381, 2013
[94] S.R. Ahrenholtz, C.C. Epley, A.J. Morris, Solvothermal Preparation of an Electrocatalytic Metalloporphyrin MOF Thin Film and its Redox Hopping Charge-Transfer Mechanism. J. Am. Chem. Soc., 136, 2464-2472, 2014
[95] C.W. Kung, K. Otake, C.T. Buru, S. Goswami, Y. Cui, J.T. Hupp, A.M. Spokoyny, O.K. Farha, Increased Electrical Conductivity in a Mesoporous Metal-Organic Framework Featuring Metallacarboranes Guests. J. Am. Chem. Soc., 140, 3871-3875, 2018
[96] J. Lee, D.W. Lim, S. Dekura, H. Kitagawa, W. Choe, MOP x MOF: Collaborative Combination of Metal-Organic Polyhedra and Metal-Organic Framework for Proton Conductivity. ACS Appl. Mater. Interfaces, 11, 12639-12646, 2019
[97] B.Q. Yuan, J.C. Zhang, R.C. Zhang, H.Z. Shi, N. Wang, J.W. Li, F.J. Ma, D.J. Zhang, Cu-Based Metal-Organic Framework as a Novel Sensing Platform for the Enhanced Electro-Oxidation of Nitrite. Sens. Actuators B Chem., 222, 632-637, 2016
[98] D. Cheng, X. Li, Y. Qiu, Q. Chen, J.A. Zhou, Y.Q. Yang, Z.Z. Xie, P. Liu, W.Q. Cai, C.C. Zhang, A Simple Modified Electrode Based on MIL-53(Fe) for the Highly Sensitive Detection of Hydrogen Peroxide and Nitrite. Anal. Methods, 9, 2082-2088, 2017
[99] M. Saraf, R. Rajak, S.M. Mobin, A Fascinating Multitasking Cu-MOF/rGO Hybrid for High Performance Supercapacitors and Highly Sensitive and Selective Electrochemical Nitrite Sensors. J. Mater. Chem. A, 4, 16432-16445, 2016
[100] J.H. Li, Y.S. Wang, Y.C. Chen, C.W. Kung, Metal-Organic Frameworks Toward Electrocatalytic Applications. Appl. Sci.-Basel, 9, 2427, 2019
[101] C.W. Kung, T.H. Chang, L.Y. Chou, J.T. Hupp, O.K. Farha, K.C. Ho, Porphyrin-Based Metal-Organic Framework Thin Films for Electrochemical Nitrite Detection. Electrochem. commun., 58, 51-56, 2015
[102] C.W. Kung, Y.S. Li, M.H. Lee, S.Y. Wang, W.H. Chiang, K.C. Ho, In Situ Growth of Porphyrinic Metal-Organic Framework Nanocrystals on Graphene Nanoribbons for the Electrocatalytic Oxidation of Nitrite. J. Mater. Chem. A, 4, 10673-10682, 2016
[103] K.A. Ritter, J.W. Lyding, The Influence of Edge Structure on the Electronic Properties of Graphene Quantum Dots and Nanoribbons. Nat. Mater., 8, 235-242, 2009
[104] X. Wu, F. Tian, W.X. Wang, J. Chen, M. Wu, J.X. Zhao, Fabrication of Highly Fluorescent Graphene Quantum Dots Using L-Glutamic Acid for in Vitro/in Vivo Imaging and Sensing. J. Mater. Chem. C, 1, 4676-4684, 2013
[105] A.B. Seabra, A.J. Paula, R. de Lima, O.L. Alves, N. Duran, Nanotoxicity of Graphene and Graphene Oxide. Chem. Res. Toxicol., 27, 159-168, 2014
[106] A.C. Berends, C.D. Donega, Ultrathin One- and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit. J. Phys. Chem. Lett., 8, 4077-4090, 2017
[107] Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, P. Chen, Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Adv. Mater., 31, 1808283, 2019
[108] W. Morris, B. Volosskiy, S. Demir, F. Gandara, P.L. McGrier, H. Furukawa, D. Cascio, J.F. Stoddart, O.M. Yaghi, Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks. Inorg. Chem., 51, 6443-6445, 2012
[109] D.W. Feng, Z.Y. Gu, J.R. Li, H.L. Jiang, Z.W. Wei, H.C. Zhou, Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal-Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angew. Chem. Int. Ed., 51, 10307-10310, 2012
[110] K.S.W. Sing, Reporting Physisorption Data for Gas Solid Systems - with Special Reference to the Determination of Surface-Area and Porosity. Pure Appl. Chem., 54, 2201-2218, 1982
[111] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., 60, 309-319, 1938
[112] I. Langmuir, The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc., 40, 1361-1403, 1918
[113] R.S. Nicholson, Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem., 37, 1351-1355, 1965
[114] Z. Pei, W.-H. Chiang, H.-Y. Shih, H.-S. Chang, J.-S. Yang, Using Distributed Energy States of Graphene Quantum Dots for an Efficient Hole-Injection Media in an Organic Electroluminescent Device. IEEE Electron Device Lett., 39, 1912-1915, 2018
[115] W.-H. Chiang, C. Richmonds, R.M. Sankaran, Continuous-Flow, Atmospheric-Pressure Microplasmas: a Versatile Source for Metal Nanoparticle Synthesis in the Gas or Liquid Phase. Plasma Sources Sci. Technol., 19, 034011, 2010
[116] H. Noh, C.-W. Kung, K.-i. Otake, A.W. Peters, Z. Li, Y. Liao, X. Gong, O.K. Farha, J.T. Hupp, Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework. ACS Catal., 8, 9848-9858, 2018
[117] P. Deria, D.A. Gomez-Gualdron, I. Hod, R.Q. Snurr, J.T. Hupp, O.K. Farha, Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)zinc(II) MOFs. J. Am. Chem. Soc., 138, 14449-14457, 2016
[118] F. Liu, M.H. Jang, H.D. Ha, J.H. Kim, Y.H. Cho, T.S. Seo, Facile Synthetic Method for Pristine Graphene Quantum Dots and Graphene Oxide Quantum Dots: Origin of Blue and Green Luminescence. Adv. Mater., 25, 3657-3662, 2013
[119] P. Kucheryavy, N. Lahanas, E. Velasco, C.J. Sun, J.V. Lockard, Probing Framework-Restricted Metal Axial Ligation and Spin State Patterns in a Post-Synthetically Reduced Iron-Porphyrin-Based Metal-Organic Framework. J. Phys. Chem. Lett., 7, 1109-1115, 2016
[120] P. Kucheryavy, N. Lahanas, J.V. Lockard, Spectroscopic Interrogations of Isostructural Metalloporphyrin-Based Metal-Organic Frameworks with Strongly and Weakly Coordinating Guest Molecules. J. Coord. Chem., 69, 1780-1791, 2016
[121] B.J. Deibert, J. Li, A Distinct Reversible Colorimetric and Fluorescent Low pH Response on a Water-Stable Zirconium-Porphyrin Metal-Organic Framework. Chem. Commun., 50, 9636-9639, 2014
[122] C.H. Su, C.W. Kung, T.H. Chang, H.C. Lu, K.C. Ho, Y.C. Liao, Inkjet-Printed Porphyrinic Metal-Organic Framework Thin Films for Electrocatalysis. J. Mater. Chem. A, 4, 11094-11102, 2016
[123] D.K. Yadav, V. Ganesan, P.K. Sonkar, R. Gupta, P.K. Rastogi, Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene. Electrochim. Acta, 200, 276-282, 2016
[124] B.S. He, D.D. Yan, Au/ERGO Nanoparticles Supported on Cu-based Metal-Organic Framework as a Novel Sensor for Sensitive Determination of Nitrite. Food Control, 103, 70-77, 2019
[125] S.Y. Dong, D.D. Zhang, G.C. Suo, W.B. Wei, T.L. Huang, Exploiting Multi-Function Metal-Organic Framework Nanocomposite Ag@Zn-TSA as Highly Efficient Immobilization Matrixes for Sensitive Electrochemical Biosensing. Anal. Chim. Acta, 934, 203-211, 2016
[126] L.M. Shi, J.X. Pan, B. Zhou, X.Q. Jiang, A New Bifunctional Electrochemical Sensor for Hydrogen Peroxide and Nitrite Based on a Bimetallic Metalloporphyrinic Framework. J. Mater. Chem. B, 3, 9340-9348, 2015
[127] S.Y. Dong, Z.J. Li, Y.L. Fu, G. Zhang, D.D. Zhang, M.M. Tong, T.L. Huang, Bimetal-Organic Framework Cu-Ni-BTC and its Derivative CuO@NiO: Construction of Three Environmental Small-Molecule Electrochemical Sensors. J. Electroanal. Chem., 858, 113785, 2020
[128] B.P. Suma, M. Pandurangappa, Graphene Oxide/Copper Terephthalate Composite as a Sensing Platform for Nitrite Quantification and its Application to Environmental Samples. J. Solid State Electrochem., 24, 69-79, 2020
[129] G.L. Luo, H. Xie, Y.Y. Niu, J. Liu, Y.Q. Huang, B.H. Li, G.J. Li, W. Sun, Electrochemical Myoglobin Biosensor Based on Magnesium Metal-Organic Frameworks and Gold Nanoparticles Composite Modified Electrode. Int. J. Electrochem. Sci., 14, 2405-2413, 2019
[130] J. Liu, W.J. Weng, C.X. Yin, G.L. Luo, H. Xie, Y.Y. Niu, X.Y. Li, G.J. Li, Y.R. Xi, Y.T. Gong, S.Y. Zhang, W. Sun, Construction of Nafion/Hb/Au/ZIF-8/CILE and its Application as Electrochemical Sensor for Determination of Bromate and Nitrite. Int. J. Electrochem. Sci., 14, 1310-1317, 2019
[131] A.T.E. Vilian, B. Dinesh, R. Muruganantham, S.R. Choe, S.M. Kang, Y.S. Huh, Y.K. Han, A Screen Printed Carbon Electrode Modified with an Amino-Functionalized Metal Organic Framework of Type MIL-101(Cr) and with Palladium Nanoparticles for Voltammetric Sensing of Nitrite. Microchim. Acta, 184, 4793-4801, 2017
[132] J. Yang, L.T. Yang, H.L. Ye, F.Q. Zhao, B.Z. Zeng, Highly Dspersed AuPd Alloy Nanoparticles Immobilized on UiO-66-NH2 Metal-Organic Framework for the Detection of Nitrite. Electrochim. Acta, 219, 647-654, 2016
[133] C.W. Kung, T.H. Chang, L.Y. Chou, J.T. Hupp, O.K. Farha, K.C. Ho, Post Metalation of Solvothermally Grown Electroactive Porphyrin Metal-Organic Framework Thin Films. Chem. Commun., 51, 2414-2417, 2015