| 研究生: |
鎖培如 So, Pei-Ru |
|---|---|
| 論文名稱: |
快速微波水熱合成alpha與delta相之奈米結構二氧化錳及其於超級電容之應用 Facile synthesis of alfa and delta MnO2 nanostructures and their application in supercapacitors |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 超級電容 、二氧化錳 、微波水熱法 |
| 外文關鍵詞: | supercapacitor, MnO2, microwave |
| 相關次數: | 點閱:80 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於此我們的實驗,選用快速又簡單的微波水熱的方式來合成二氧化錳,前驅物使用過錳酸鉀作為錳金屬來源,使其水熱於酸性溶液中(氯化氫)作化學反應,主要改變水熱之(1)溫度及(2)升溫速率兩者來控制二氧化錳之相與形貌,全部的實驗水熱時間皆為5分鐘的反應。材料特性部分,在溫度變因中是使用140 o C至200 o C做反應,由結果發現於低溫的140 o C會傾向形成δ相,形貌為花狀表面的微米顆粒,並參雜著些許奈米的棒狀;高溫於160oC -200oC則傾向形成α相之二氧化錳,形貌為奈米棒狀,並隨溫度的升高棒狀直徑增加,。在升溫速率變因於140 o C之樣品,形成的二氧化錳可被分為兩種,樣品5 及20 o C /min為較差結晶度的δ相二氧化錳,形貌為花狀顆粒與奈米棒狀,擁有比表面積分別為210.4 m2/g及114.9m2/g;樣品10 及40 o C /min為結晶度較佳的δ相二氧化錳,形貌為純花狀顆粒,比表面積分別為129.4 m2/g及114.3 m2/g;在升溫速率變因固定於200 o C之樣品,皆形成了α相的棒狀物,隨著升溫速率的增加棒狀物的直徑增加、長度縮短;棒狀的比表面積較低,皆介於25-30 m2/g。
電化學部分,取合成後之二氧化錳材料作為超級電容之電極材料,做循環伏安法、電化學電阻、循環壽命之電化學測試;條件為使用1M Na2SO4水溶液作為電解質,電位窗為-0.1-0.9V。溫度變因之樣品以140oC的δ-MnO2為最佳擁有175.5F/g電容值,其餘的α-MnO2 皆介於40-60F/g的低電容值,由於在花狀顆粒擁有明顯較高的比表面積。升溫速率變因於140 o C之 5 、 20 o C /min樣品,擁有最好的比電容值表現分別為201.7F/g 及175.5F/g,是由於較高的比表面積、較多的孔洞分布體積、較少的K離子比例於二氧化錳主體中。升溫速率於200 o C,由於棒狀α-MnO2其近乎無中孔洞的結構且比表面積相似而並無特殊表現。
Nanostructured MnO2 was synthesized using a simple and rapid (5min)microwave-assisted hydrothermal technique through the decomposition of KMnO4 in various hydrochloric acid conditions. The hydrothermal solution consisted of KMnO4
and HCl. The effects of hydrothermal temperature and ramp rate were addressed. The temperature was varied from 140 to 200 o C at a ramp rate of 20 o C /min. It was found
that a lower temperature favors the formation of flower-like δ-MnO2 while a higher temperature favors alfa-MnO2 nanorod. The flower-like δ-MnO2 has a higher specific surface area of 114.9 m2/g than the alfa-MnO2 nanorods (25-30 m2/g). The flower-like δ-MnO2 has a larger pore size of 2.13 nm than the alfa-MnO2 nanorods. At a fixed temperature of 140 o C, the ramp rate was varied from 5 to 40 o C /min and found two kinds of characteristic, 5 and 20 o C /min samples have poor crystallinity the morphology is flower and few whiskers. Samples 10 and 40 o C /min which have good crystallinity the
morphology is pure flower without whiskers. At a fixed temperature of 200 o C, the ramp rate was varied from 7 to 40 o C /min and found that the length and diameter of the MnO2 nanorod become shorter and larger with the raising ramp rate. The obtained MnO2 was made into electrodes for use in supercapacitors. The supercapacitors were evaluated using
cyclic voltammetry and electrochemical impedance spectroscopy in 1M Na2SO4 within potential window -0.1~0.9V. The samples at fixed temperature 140 o C, 5 and 20 o C /min
ramp rate which have flower and whiskers morphology obtain the best specific capacitance performance (201.7F/g and 175.5F/g) due to their high surface area, much more pore
volume structure, low K+ ion exist in matrix and even may be the poor crystallinity cause more water adsorption. The other effects of characteristics on the capacitance performance will also be addressed.
1. Li, Y., et al., Preparation and electrochemical performances of alpha-MnO2 nanorod for supercapacitor. Materials Letters, 2011. 65(2): p. 403-405.
2. Subramanian, V., H.W. Zhu, and B.Q. Wei, Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. Journal of Power Sources, 2006. 159(1): p. 361-364.
3. Zhang, Y., et al., Progress of electrochemical capacitor electrode materials: A review. International Journal of Hydrogen Energy, 2009. 34(11): p. 4889-4899.
4. Rudge, A., et al., Conducting Polymers as Active Materials in Electrochemical Capacitors. Journal of Power Sources, 1994. 47(1-2): p. 89-107.
5. Rakhi, R.B., et al., High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. Journal of Materials Chemistry, 2011. 21(40): p. 16197-16204.
6. Wang, Y.G., Z.D. Wang, and Y.Y. Xia, An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochimica Acta, 2005. 50(28): p. 5641-5646.
7. Phuruangrat, A., T. Thongtem, and S. Thongtem, Microwave-assisted
synthesis of ZnO nanostructure flowers. Materials Letters, 2009. 63(13-14): p. 1224-1226.
8. Lai, T.L., et al., Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide. Materials Research Bulletin, 2009. 44(10): p. 2040-2044.
9. Meher, S.K. and G.R. Rao, Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications. Journal of Power Sources, 2012. 215: p. 317-328.
10. S. Devaraj and N. Munichandraiah, Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties.
Journal of Physical Chemistry C, 2008. 12: p. 4406-4416.
11. Zhang, Y., et al., Crystallization design of MnO2 towards better supercapacitance. CrystEngComm, 2012. 14(18): p. 5892.
12. Kim, S.H., S.J. Kim, and S.M. Oh, Preparation of layered MnO2 via thermal decomposition of KMnO4 and its electrochemical characterizations. Chemistry of Materials, 1999. 11(3): p. 557-563.
13. Liu, J., et al., Size control, metal substitution, and catalytic application of cryptomelane nanomaterials prepared using cross-linking reagents.
Chemistry of Materials, 2004. 16(2): p. 276-285.
14. Song, Z.X., et al., A facile template-free synthesis of alpha-MnO2
nanorods for supercapacitor. Journal of Alloys and Compounds, 2013.
560: p. 151-155.
15. V. Subramanian, et al., Hydrothermal Synthesis and Pseudocapacitance
Properties of MnO2 Nanostructures Journal of Physical Chemistry C,
2005. 109: p. 20207-20214.
16. Tompsett, G.A., W.C. Conner, and K.S. Yngvesson, Microwave
synthesis of nanoporous materials. Chemphyschem, 2006. 7(2): p.
296-319.
17. Ming, B., et al., Microwave-hydrothermal synthesis of birnessite-type
MnO2 nanospheres as supercapacitor electrode materials. Journal of
Power Sources, 2012. 198: p. 428-431.
18. Li, Y., et al., Facile controlled synthesis and growth mechanisms of
flower-like and tubular MnO2 nanostructures by microwave-assisted
hydrothermal method. J Colloid Interface Sci, 2012. 369(1): p. 123-8.
19. Zhang, X., et al., Microwave-assisted reflux rapid synthesis of MnO2
nanostructures and their application in supercapacitors.
Electrochimica Acta, 2013. 87: p. 637-644.
20. Devaraj, S. and N. Munichandraiah, Effect of crystallographic structure
of MnO2 on its electrochemical capacitance properties. Journal of
Physical Chemistry C, 2008. 112(11): p. 4406-4417.
21. Chun, S.E., S.I. Pyun, and G.J. Lee, A study on mechanism of
charging/discharging at amorphous manganese oxide electrode in 0.1
M Na2SO4 solution. Electrochimica Acta, 2006. 51(28): p. 6479-6486.
22. Toupin, M., T. Brousse, and D. Belanger, Charge storage mechanism of
MnO2 electrode used in aqueous electrochemical capacitor. Chemistry
of Materials, 2004. 16(16): p. 3184-3190.
23. Hu, C.C. and T.W. Tsou, Ideal capacitive behavior of hydrous
manganese oxide prepared by anodic deposition. Electrochemistry
Communications, 2002. 4(2): p. 105-109.
24. Zhang, Y.J., et al., Crystallization design of MnO2 towards better
supercapacitance. Crystengcomm, 2012. 14(18): p. 5892-5897.
25. Athouel, L., et al., Variation of the MnO2 birnessite structure upon
charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. Journal of Physical Chemistry C, 2008. 112(18): p. 7270-7277.
26. Zhu, H.T., et al., Birnessite-type MnO2 Nanowalls and Their Magnetic Properties. Journal of Physical Chemistry C, 2008. 112(44): p. 17089-17094.
27. Ghaemi, M., et al., Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction. Electrochimica Acta, 2008. 53(14): p.4607-4614.
28. Wu, N.L., et al., Electrochemical capacitor of magnetite in aqueous electrolytes. Journal of Power Sources, 2003. 113(1): p. 173-178.
29. Winter, M. and R.J. Brodd, What are batteries, fuel cells, and supercapacitors? (vol 104, pg 4245, 2003). Chemical Reviews, 2005. 105(3): p. 1021-1021.
30. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors.
Nature Materials, 2008. 7(11): p. 845-854.
31. Kotz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15-16): p. 2483-2498.
32. Huggins, R.A., Supercapacitors and electrochemical pulse sources.
Solid State Ionics, 2000. 134(1-2): p. 179-195.
33. Burke, A., Ultracapacitors: why, how, and where is the technology.
Journal of Power Sources, 2000. 91(1): p. 37-50.
34. Lin, C., J.A. Ritter, and B.N. Popov, Characterization of
sol-gel-derived cobalt oxide xerogels as electrochemical capacitors.
Journal of the Electrochemical Society, 1998. 145(12): p. 4097-4103.
35. Frackowiak, E. and F. Beguin, Carbon materials for the
electrochemical storage of energy in capacitors. Carbon, 2001. 39(6): p.
937-950.
36. Niu, C.M., et al., High power electrochemical capacitors based on
carbon nanotube electrodes. Applied Physics Letters, 1997. 70(11): p.
1480-1482.
37. Lee, H.Y. and J.B. Goodenough, Ideal supercapacitor behavior of
amorphous V2O5 center dot nH(2)O in potassium chloride (KCl)
aqueous solution. Journal of Solid State Chemistry, 1999. 148(1): p.
81-84.
38. Zheng, J.P., P.J. Cygan, and T.R. Jow, Hydrous Ruthenium Oxide as an
Electrode Material for Electrochemical Capacitors. Journal of the
Electrochemical Society, 1995. 142(8): p. 2699-2703.
39. Ghosh, S. and O. Inganas, Conducting polymer hydrogels as 3D
electrodes: Applications for supercapacitors. Advanced Materials, 1999.
11(14): p. 1214-1218.
40. Gupta, V. and N. Miura, Electrochemically deposited polyaniline
nanowire's network - A high-performance electrode material for redox
supercapacitor. Electrochemical and Solid State Letters, 2005. 8(12): p.
A630-A632.
41. Burke, A.F., Batteries and ultracapacitors for electric, hybrid, and fuel
cell vehicles. Proceedings of the Ieee, 2007. 95(4): p. 806-820.
42. Liu, X.R. and P.G. Pickup, Ru oxide/carbon fabric composites for
supercapacitors. Journal of Solid State Electrochemistry, 2010. 14(2): p.231-240.
43. Xu, B., et al., Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochimica Acta, 2007. 52(13): p. 4595-4598.
44. Andreas, H.A. and B.E. Conway, Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from
acidic to alkaline pHs. Electrochimica Acta, 2006. 51(28): p.6510-6520.
45. Conway, B.E., Electrochemical Supercapacitors, Scientific
Fundamentals and Technological Applications. 1999, New York:
Kluwer-Plenum.
46. Bard, A.J.F., L. R.,, Electrochemical methods: fundamentals and
applications. 2001.
47. Wang, H.L., et al., Ni(OH)(2) Nanoplates Grown on Graphene as
Advanced Electrochemical Pseudocapacitor Materials. Journal of the
American Chemical Society, 2010. 132(21): p. 7472-7477.
48. Raymundo-Pinero, E., et al., Performance of manganese oxide/CNTs
composites as electrode materials for electrochemical capacitors.
Journal of the Electrochemical Society, 2005. 152(1): p. A229-A235.
49. Hu, C.C., 電化學原理與方法. 2002: 五南圖書.
50. Xiao, W., et al., Growth of single-crystal α-MnO2 nanotubes prepared
by a hydrothermal route and their electrochemical properties. Journal
of Power Sources, 2009. 193(2): p. 935-938.
51. Wei, J., N. Nagarajan, and I. Zhitomirsky, Manganese oxide films for
electrochemical supercapacitors. Journal of Materials Processing
Technology, 2007. 186(1-3): p. 356-361.
52. Wang, J.G., et al., Shape-controlled synthesis of hierarchical hollow
urchin-shape alpha-MnO2 nanostructures and their electrochemical
properties. Materials Chemistry and Physics, 2013. 140(2-3): p. 643-650.
53. Zhang, X., et al., Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochimica Acta, 2013.
89: p. 523-529.
54. Ma, J.P., et al., Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance. New Journal of
Chemistry, 2013. 37(3): p. 722-728.
55. Huang, H., S. Sithambaram, and S.L. Suib, Microwave-assisted hydrothermal synthesis of cryptomelane-type octahedral molecular sieves (OMS-2) and their catalytic studies. Abstracts of Papers of the American Chemical Society, 2010. 240.
56. Yan, J., et al., Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon,2010. 48(13): p. 3825-3833.
57. Brousse, T., et al., Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. Journal of the Electrochemical Society, 2006. 153(12): p. A2171-A2180.
58. Bard, A.J.F., L. R. , Electrochemical Methods Fundamental and Applications. 1980, Canada: Jhon Wiley & Sons.
59. A. J. Bard, L.R.F., Electrochemical Principles, Methods and Applications. 1996, Britain: Oxford University.
60. C. M. Brett, A.M.O.B., Electrochemistry-Principles, Methods, and Applications. 1993, New York: Oxford.
61. Huang, C.W. and H.S. Teng, Influence of carbon nanotube grafting on the impedance behavior of activated carbon capacitors. Journal of the Electrochemical Society, 2008. 155(10): p. A739-A744.
62. Hu, C.C., W.C. Chen, and K.H. Chang, How to achieve maximum
utilization of hydrous ruthenium oxide for supercapacitors. Journal of
the Electrochemical Society, 2004. 151(2): p. A281-A290.
63. 土壤無機相對有機污染物吸附特性之研究研.
64. Pang, S.C., M.A. Anderson, and T.W. Chapman, Novel electrode
materials for thin-film ultracapacitors: Comparison of electrochemical
properties of sol-gel-derived and electrodeposited manganese dioxide.
Journal of the Electrochemical Society, 2000. 147(2): p. 444-450.