| 研究生: |
許凱甯 Hsu, Kai-Ning |
|---|---|
| 論文名稱: |
人字齒輪轉子軸承系統之動態分析 Dynamic Analysis of a Double-Helical Geared Rotor-Bearing System |
| 指導教授: |
崔兆棠
Choi, Siu-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 轉子軸承系統 、人字齒輪 、有限元素法 |
| 外文關鍵詞: | Rotor-bearing system, Double-helical gear, Finite element method |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以有限元素法 (Finite Element Method)模擬人字齒輪於轉子軸承系統之動態行為並以ANSYS軟體來驗證人字齒輪轉子軸承系統。系統轉軸模擬為Timoshenko樑,即考慮轉軸的剪應變效應及旋轉慣性;轉盤假設為剛體,並考慮其陀螺效應及質量偏心;軸承以線性彈簧及阻尼器來模擬;齒輪對視為線性彈簧及阻尼器沿著壓力線連接的兩個剛性轉盤來模擬。本文探討斜齒輪轉子軸承系統與人字齒輪轉子軸承系統於軸向響應之差異。改變齒輪螺旋角度、齒輪嚙合勁度係數、齒輪傳遞誤差及齒輪位於不同節點,對系統自然頻率、側向及軸向響應的影響。從理論及前述模擬得知,人字齒輪相較於斜齒輪產生的軸向響應較小。從數值結果得知,改變齒輪上的變數對系統之側向-扭轉耦合模態影響較大。
In this thesis, dynamic analysis of a double-helical geared rotor-bearing system is studied by using the finite element method. Rotating shafts are modeled as Timoshenko beam, which includes shear deformation and the effect of rotary inertia. Bearings are modeled as linear spring-damper. Disks are considered to be rigid, and their gyroscopic effect is taken into account. The gear mesh is modeled as a pair of rigid disks connected with spring-damped set along the pressure line. In this thesis, we discuss about the difference of axial response between helical geared rotor-bearing system and double-helical geared rotor-bearing system and the effects of parameters, such as helical angle, gear mesh stiffness, transmission error of gears, and different location of gears on natural frequency, lateral response, and axial response of the system. Software ANSYS is used to verify results for double-helical geared rotor-bearing systems. Numerical results show that the resonant response in axial direction of the double-helical geared rotor-bearing system is smaller than that of the helical geared rotor-bearing system, and that parameters of gears have much influence on the lateral-torsional coupling modes of the system.
[1]Ruhl, R. L., and Booker, J. F., “A Finite Element Model for Distributed Parameter Turborotor System,” ASME, Journal of Engineering for Industry, Vol. 94, pp. 126-132, 1972.
[2]Nelson, H. D., and McVaugh, J. M., “The Dynamics of Rotor-Bearing Systems Using Finite Elements,” ASME, Journal of Engineering for Industry, Vol. 98, pp. 593-600, 1976.
[3]Nelson, H. D., “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” ASME, Journal of Mechanical Design, Vol. 102, pp. 793-803, 1980.
[4]Greenhill, L. M., Bickford, W. B., and Nelson, H. D., “A Conical Beam Finite Element for Rotor Dynamic Analysis,” ASME, Journal of Vibration Acoustics, Stress, Reliability in Design, Vol. 107, pp. 421-430, 1985.
[5]Kahraman, A., Ozguven, H. N., Houser, D. R., and Zakrajsek, J. J., “Dynamic Analysis of Geared Rotors by Finite Elements,” ASME, Journal of Mechanical Design, Vol. 114, pp. 507-514, 1992.
[6]Rao, J. S., Shiau, T. N., and Chang, J. R., “Dynamic Behavior of Geared Rotors,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 121, pp. 494-503, 1999.
[7]Choi, S. T., and Mau, S. Y., “Dynamic Analysis of Geared Rotor-Bearing System by the Transfer Matrix Method,” ASME, Journal of Mechanical Design, Vol. 123, pp. 562-568, 2001.
[8]Chen, Y. C., Dynamic Analysis of a Geared Rotor-Bearing System, Doctoral Dissertation, National Cheng Kung University, 2014.
[9]Kahraman, A., “Effect of Axial Vibrations on the Dynamics of a Helical Gear Pair,” ASME, Journal of Vibration and Acoustics, Vol. 115, pp. 33-39, 1993.
[10]Kahraman, A., “Dynamic Analysis of a Multi-Mesh Helical Gear Train,” ASME, Journal of Mechanical Design, Vol. 116, pp. 706-712, 1994.
[11]Draca, S., Finite Element Model of a Double-Stage Helical Gear Reduction, Doctoral Dissertation, University of Windsor, 2006.
[12]Feng, K., Matsumura, S., and Houjoh, H., “Dynamic Behavior of Helical Gears with Effects of Shaft and Bearing Flexibilities,” Applied Mechanics and Materials, Vol. 86, pp. 26-29, 2011.
[13]Zhang, Y., Wang, Q., Ma, H., Huang, J., and Zhao, C., “Dynamic Analysis of Three-Dimensional Helical Geared Rotor System with Geometric Eccentricity,” KSME, Journal of Mechanical Science and Technology, Vol. 27, pp. 3231-3242, 2013.
[14]楊介偉, 斜齒輪應用於齒輪轉子軸承系統, 國立成功大學航空太空工程研究所碩士論文, 2015.
[15]Kang, M. R., and Kahraman, A., “An Experimental and Theoretical Study of the Dynamic Behavior of Double-helical Gear Sets,” Journal of Sound and Vibration, Vol. 350, pp.11-29, 2015
[16]Yang, F., Huang, Q., Wang, Y., and Wang, J., “Research on Dynamics of Double-Mesh Helical Gear Set,” Applied Mechanics and Materials, Vol. 215-216, pp. 1021-1025, 2012.
[17]Chen, S., Tang, J., Li, Y., and Hu, Z., “Rotordynamics Analysis of a Double-Helical Gear Transmission System,” Meccanica, Vol. 51, pp. 251-268, 2016.
[18]Chang, Q., Hou, L., Sun, Z., Wang, W., and You, Y., “Nonlinear Dynamic Modeling of Double Helical Gear System,” Jordan Journal of Mechanical and Industrial Engineering, Vol. 8, No. 5, pp. 289-296, 2014.
[19]黃忠立, 轉子-軸承系統在多臨界轉速限制下之輕量化設計, 國立成功大學航空太空工程研究所碩士論文, 1987.
[20]阮競揚, 含橫向裂縫的轉子軸承系統之動態特性分析, 國立成功大學航空太空工程研究所碩士論文, 1997.
校內:立即公開