簡易檢索 / 詳目顯示

研究生: 陳威宇
Chen, Wei-Yu
論文名稱: 史賓斯基碎型結構之微波傳輸特性及被動元件應用
The Microwave Property and the Application of Passive Device of Sierpinski Fractal Structure
指導教授: 張凌昇
Jang, Ling-Sheng
翁敏航
Weng, Min-Hang
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 55
中文關鍵詞: 雙頻帶微小化史賓斯基碎形濾波器
外文關鍵詞: Sierpinski, dual-band, fractal, miniaturize, filter
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出了一種新型碎形結構應用於微帶線濾波濾波器之設計。首先提出並分析一具有史賓斯基結構之共振器。隨著史賓斯基結構之疊代階數增加,該共振器之邊緣耦合線的共振模態及該共振器的共振模態逐漸結合於同一共振點,也提升了該電磁傳輸能量。此外,該共振器具有頻率平移特性除了具有微小化的特性,其對於傳輸損失之改善最大可達到97.7%。為了驗證該史賓斯基共振器之傳輸特性被提升,計算並分析其品質因素值。最後,提出了該碎形結構之設計準則並將其應用於濾波器之設計。
    本論文又利用第二階及第三階之史賓斯基共振器提出了一系列的直接耦合帶通濾波器。藉由疊接的史賓斯基共振器結構,直接耦合帶通濾波器的通帶選擇性可被提升而其頻寬可被增加。與傳統的平行耦合線濾波器比較,本論文提出之直接耦合帶通濾波器可達到62.3%的最大面積縮減。
    最後,本篇論文利用第二階及第三階之史賓斯基共振器提出一種具有雙頻帶之交錯式耦合帶通濾波器。為了滿足無線區域網路(wireless local area network, WLAN) IEEE 802.11b/g (2.4 GHz)及IEEE 802.11a (5.2–5.8GHz)之通訊規格要求,該濾波器之中心頻率分別設計於2.4GHz及5.2GHz。由於該濾波器具有雙傳輸零點的特性,可達到具有高通帶選擇性之濾波器響應。

    This thesis presents the novel structure based on the fractal application using for the design of microstrip filter. A Sierpinski based resonator is proposed and analyzed. As the iterative orders of the Sierpinski square increases, the modes of edge coupled line and resonators are combined at the same resonance and the transmission energy of electromagnetic wave at the resonances is enhanced. The maximum improvement of energy loss is approximately to 97.7%, and the property of frequency shifting could meet the goal of the miniaturized. To qualify the transmission enhancement in the proposed Sierpinski square resonators, the quality factor Q is also calculated. Then, the design guideline of the Sierpinski is proposed and applied.
    The thesis also presents a series of direct-coupled bandpass filters are designed by 2nd order Sierpinski resonators and 3rd order Sierpinski resonators. By the folded Sierpinski resonators, the selectively and the bandwidth of the filters are both increased. Compared with the conventional parallel coupled line filter, the size in reduction of proposed filter can meet 62.3% in maximum.
    Furthermore, a dual-band cross-coupling bandpass filter with 2nd order Sierpinski resonators and 3rd order Sierpinski resonators is proposed. The high selectivity of the designed BPF can be obtained due to the appearance of transmission zeros in two passband edge. The proposed filter is designed to satisfy the wireless local area network (WLAN) standard such as IEEE 802.11b/g (2.4 GHz) and IEEE 802.11a (5.2–5.8GHz) specifications.

    中文摘要 I ABSTRACT II ACKNOWLEDGEMENT III CONTENT IV LIST OF TABLES VI LIST OF FIGURES VII LIST OF FIGURES VII CHAPTER 1 INTRODUCTION OF FRACTAL 1 1.1 What is fractal 1 1.2 Characteristics of fractal 2 1.2.1 Self-similarity 2 1.2.2 Iterative method 3 1.2.3 Dimension of fractal 3 1.2.4 Space-filling 3 1.3 Motivation 4 1.4 Organization of the thesis 4 CHAPTER 2 TRANSMISSION LINE THEORY 7 2.1 Introduction 7 2.2 Basic theory of microwave filters 8 2.3 The properties of microstrip lines 12 2.3.1 Microstrip structure 12 2.3.2 Waves in microstrip 13 2.3.3 Quasi-TEM approximation 13 2.3.4 Effective dielectric constant and characteristic impedance 13 2.3.5 Guided wavelength, propagation constant, phase velocity, and electrical length 14 2.3.6 Dispersion in microstrip 15 2.3.7 Microstrip losses 15 CHAPTER 3 DESIGN OF NOVEL MINIATURIZED AND HIGH QUALITY SIERPINSKI SQUARE RESONATORS 18 3.1 Introduction 18 3.1.1 Sierpinski geometry 18 3.2 Resonant behavior of the Sierpinski square 20 3.3 Analysis of the proposed Sierpinski based resonator 24 3.4 Experimental results and discussion 26 3.5 Summary 28 CHAPTER 4 SIERPINSKI SQUARE RESONATOR APPLIED FOR LOW LOSS AND MINIATURIZED BANDPASS FILTERS 30 4.1 Introduction 30 4.2 Bandpass filter design using Sierpinski square resonator 30 4.2.1 The 2nd order direct-coupled bandpass filter with two-pole, four-pole and six-pole 30 4.2.2 The 3rd order bandpass filter with two-pole, four-pole and six-pole 34 4.3 Experimental results and discussion 37 4.3.1 The 2nd order bandpass filter with two-pole, four-pole and six-pole 37 4.3.2 The 3rd order bandpass filter with two-pole, four-pole and six-pole 40 4.4 Summary 44 CHAPTER 5 SIERPINSKI SQUARE RESONATOR APPLIED FOR CROSS COUPING AND DUAL-BAND BANDPASS FILTERS 45 5.1 Introduction 45 5.2 Design of the coupling structure 45 5.3 Experimental results and discussion 49 5.4 Summary 51 CHAPTER 6 CONCLUSION 52 REFERENCES 54

    [1] B. B. Mandelbrot, “The Fractal Nature of Geometry,” New York, W. H. Freeman and Company, 1917.
    [2] H. O. Peitgen, H. Jurgens, and D. Saupe, “Chaos and Fractals,” New York, Springer-Verlag, 1992.
    [3] http://en.wikipedia.org
    [4] C. Puente, J. Romeu, R. Pous, X. Garcia, and F. Benitez, “Fractal multi-band antenna based on the Sierpinski gasket,” Electron. Lett., vol. 32, pp. 1–2, Jan. 1996.
    [5] C. Puente, J. Romeu, R. Pous, and A. Cardama, “On the behavior of the Sierpinski multi-band fractal antenna,” IEEE Trans. Antennas Propagat., vol. 46, pp. 517–524, Apr. 1998.
    [6] L. Zhou, W. Wen, C. T. Chan, and P. Sheng, “Multiband subwavelength magnetic reflectors based on fractals,” Appl. Phys. Lett., vol. 83, pp. 3257-3259, Oct. 2003.
    [7] D. Chen, S. Wang, L Li, Z. Liu, X. Z. Zhao, M. Zhang , and Z.Chen, “Microstrip filter with H-shaped fractal,” Appl. Phys. Lett., vol. 88, 253507(1)-253507(3), June 2006.
    [8] Q. S. Wu, Q. Xue, and C. H. Chan, “Bandpass filter using microstrip ring resonators,” Electron. Lett., vol. 39, no. 1, pp. 62–63, Jan. 2003.
    [9] D. M. Pozar, “Microwave Engineering(Second Edition),” John Wiley & Sons, Inc., 1998.
    [10] G. L. Matthaei, L. Young, E. M. T. Jone, “Microwave Filters, Impedance-Matching Networks and Coupling Structures,” New York, McGraw Hill, 1964.
    [11] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
    [12] T. C. Edwards and M. B. Steer, “Foundations of Interconnect and Microstrip Design,” John Wiley and Sons, Inc., 2000.
    [13] K. C. Gupta, R. Gargq, and I. J. Bahl, “Microstrip lines and slot lines(Second Edition),” Artech House Inc., Norwood, MA, pp.91-92, 1996.
    [14] J. S. Lee, C. S. Kim, Y. T. Lee, D. Ahn, S. Nam, “A Spiral-Shaped Defected Ground Structure for Coplanar Waveguide,” IEEE Microwave and Wireless Components Lett., vol. 12, no. 9, pp. 330-332, Sep. 2002.
    [15] James, J. R. and Henderson, A., “High-frequency behavior of microstrip open-circuit terminations,” IEE J. on Microwaves, Optics and Acoustics, vol. 3, pp. 205-218, Sep. 1979.
    [16] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London), vol.391, pp. 667-669, Feb.1998.
    [17] M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. vol. 88, pp.240311.1-240311.3, June 2006.
    [18] Y. Kobayashi and K. Kubo, “Canonical bandpass filters using dual-mode dielectric resonators,” IEEE MTT-S Int. Microw. Symp. Dig., vol. D-3, pp. 137–140, June 1987.
    [19] R. R. Bonetti and A. E. Williams, “Quadruple mode filter,” IEEE MTT-S Int. Microwave Symp. Dig., vol. D-5, pp. 145–147, June 1987.
    [20] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 789–792, June 1997.
    [21] IE3D Version 9.0 Zeland Software Inc., Fremont, CA, 2000.

    下載圖示 校內:2011-08-26公開
    校外:2011-08-26公開
    QR CODE