| 研究生: |
李坤陞 Lee, Kun-Sheng |
|---|---|
| 論文名稱: |
線性與快速準絕熱動態之矽光子非對稱Y型波導分模多工器結構比較與分析 Comparison and analysis of silicon asymmetric Y-junction two-mode (de)multiplexers using linear and fast quasiadiabatic dynamics |
| 指導教授: |
曾碩彥
Tseng, Shuo-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 非對稱Y型波導 、絕熱參數 、快速準絕熱動態 |
| 外文關鍵詞: | asymmetric Y-junction, adiabaticity parameter, fast quasiadiabatic dynamics, FAQUAD |
| 相關次數: | 點閱:107 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文討論高折射率差的矽光子之雙模態非對稱Y型波導(解)分模多工器與其模擬,並且定義一個適用於高折射率差的矽光子元件的絕熱參數,沿著傳播方向,透過快速準絕熱動態 (FAQUAD) 來重新分配波導上的絕熱性;利用快速準絕熱動態 (FAQUAD) 將絕熱參數固定成一常數,使得光功率在耦合時會受到限制,讓其不會耦合至其他非需要的模態。根據模擬結果,快速準絕熱動態 (FAQUAD) 計算的波導其長度只需18µm,耦合效率便大過於傳統長度100µm的線性分離波導,而操作頻寬可達到300nm (1400nm~1700nm),且製程容忍範圍在正負10 nm之間時,其模態串擾仍低於 -20 dB。
A short and broadband high index-contrast silicon asymmetric Y-junction two-mode (de)multiplexer with large fabrication tolerance is proposed and simulated. An adiabaticity parameter is defined, which is suitable for high index-contrast silicon devices. The fast quasiadiabatic dynamics (FAQUAD) protocol is used to homogeneously reassign device adiabaticity along the propagation. The FAQUAD protocol limits the power coupling into the unwanted eigenmode in waveguide under a fixed value of adiabaticity parameter along the propagation. A 18 µm long mode (de)multiplexer with crosstalk lower than -38 dB is obtained. Simulations also show that the operating optical bandwidth is as large as 300 nm (1400 nm ∼ 1700 nm). Finally, the device is also fabrication tolerant from -10 nm to +10 nm.
1 Shacham, A., Bergman, K., and Carloni, L.P.: ‘Photonic networks-on-chip for future generations of chip multiprocessors’, IEEE Transactions on Computers, 2008, 57, (9), pp. 1246-1260
2 Miller, D.A.: ‘Device requirements for optical interconnects to silicon chips’, Proceedings of the IEEE, 2009, 97, (7), pp. 1166-1185
3 Vlasov, Y.A.: ‘Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G’, IEEE Communications Magazine, 2012, 50, (2), pp. 567-572
4 Lee, B.G., Chen, X., Biberman, A., Liu, X., Hsieh, I.-W., Chou, C.-Y., Dadap, J.I., Xia, F., Green, W.M., and Sekaric, L.: ‘Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks’, IEEE Photonics Technology Letters, 2008, 20, (6), pp. 398-400
5 Berdagué, S., and Facq, P.: ‘Mode division multiplexing in optical fibers’, Applied Optics, 1982, 21, (11), pp. 1950-1955
6 Luo, L.-W., Ophir, N., Chen, C.P., Gabrielli, L.H., Poitras, C.B., Bergmen, K., and Lipson, M.: ‘WDM-compatible mode-division multiplexing on a silicon chip’, Nature Communications, 2014, 5, pp. 6146487
7 Li, Y., Li, C., Li, C., Cheng, B., and Xue, C.: ‘Compact two-mode (de) multiplexer based on symmetric Y-junction and multimode interference waveguides’, Optics Express, 2014, 22, (5), pp. 5781-5786
8 Uematsu, T., Ishizaka, Y., Kawaguchi, Y., Saitoh, K., and Koshiba, M.: ‘Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission’, Journal of Lightwave Technology, 2012, 30, (15), pp. 2421-2426
9 Dai, D., Wang, J., and Shi, Y.: ‘Silicon mode (de) multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light’, Optics Letters, 2013, 38, (9), pp. 1422-1424
10 Xing, J., Li, Z., Xiao, X., Yu, J., and Yu, Y.: ‘Two-mode multiplexer and demultiplexer based on adiabatic couplers’, Optics Letters, 2013, 38, (17), pp. 3468-3470
11 Ding, Y., Xu, J., Da Ros, F., Huang, B., Ou, H., and Peucheret, C.: ‘On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer’, Optics Express, 2013, 21, (8), pp. 10376-10382
12 Sun, C., Yu, Y., Ye, M., Chen, G., and Zhang, X.: ‘An ultra-low crosstalk and broadband two-mode (de)multiplexer based on adiabatic couplers’, Scientific Reports, 2016, 6, pp. 38494
13 Driscoll, J.B., Grote, R.R., Souhan, B., Dadap, J.I., Lu, M., and Osgood, R.M.: ‘Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing’, Optics Letters, 2013, 38, (11), pp. 1854-1856
14 Chen, W., Wang, P., and Yang, J.: ‘Mode multi/demultiplexer based on cascaded asymmetric Y-junctions’, Optics Express, 2013, 21, (21), pp. 25113-25119
15 Burns, W., and Milton, A.: ‘Mode conversion in planar-dielectric separating waveguides’, IEEE Journal of Quantum Electronics, 1975, 11, (1), pp. 32-39
16 Love, J.D., and Riesen, N.: ‘Single-, few-, and multimode Y-junctions’, Journal of Lightwave Technology, 2012, 30, (3), pp. 304-309
17 Riesen, N., and Love, J.D.: ‘Design of mode-sorting asymmetric Y-junctions’, Applied Optics, 2012, 51, (15), pp. 2778-2783
18 Martínez-Garaot, S., Muga, J.G., and Tseng, S.-Y.: ‘Shortcuts to adiabaticity in optical waveguides using fast quasiadiabatic dynamics’, Optics Express, 2017, 25, (1), pp. 159-167
19 Miller, S.: ‘Coupled wave theory and waveguide applications’, Bell Labs Technical Journal, 1954, 33, (3), pp. 661-719
20 Yariv, A.: ‘Coupled-mode theory for guided-wave optics’, IEEE Journal of Quantum Electronics, 1973, 9, (9), pp. 919-933
21 Torrontegui, E., Ibánez, S., Martínez-Garaot, S., Modugno, M., del Campo, A., Guéry-Odelin, D., Ruschhaupt, A., Chen, X., and Muga, J.G.: ‘Shortcuts to adiabaticity’, Adv. At. Mol. Opt. Phys, 2013, 62, pp. 117-169
22 Bason, M.G., Viteau, M., Malossi, N., Huillery, P., Arimondo, E., Ciampini, D., Fazio, R., Giovannetti, V., Mannella, R., and Morsch, O.: ‘High-fidelity quantum driving’, Nature Physics, 2012, 8, (2), pp. 147-152
23 Zhang, J., Shim, J.H., Niemeyer, I., Taniguchi, T., Teraji, T., Abe, H., Onoda, S., Yamamoto, T., Ohshima, T., and Isoya, J.: ‘Experimental implementation of assisted quantum adiabatic passage in a single spin’, Physical Review Letters, 2013, 110, (24), pp. 240501
24 Lin, T.-Y., Hsiao, F.-C., Jhang, Y.-W., Hu, C., and Tseng, S.-Y.: ‘Mode conversion using optical analogy of shortcut to adiabatic passage in engineered multimode waveguides’, Optics Express, 2012, 20, (21), pp. 24085-24092
25 Tseng, S.-Y., and Chen, X.: ‘Engineering of fast mode conversion in multimode waveguides’, Optics Letters, 2012, 37, (24), pp. 5118-5120
26 Martínez-Garaot, S., Tseng, S.-Y., and Muga, J.: ‘Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity’, Optics Letters, 2014, 39, (8), pp. 2306-2309
27 Tseng, S.-Y.: ‘Counterdiabatic mode-evolution based coupled-waveguide devices’, Optics Express, 2013, 21, (18), pp. 21224-21235
28 Tseng, S.-Y., Wen, R.-D., Chiu, Y.-F., and Chen, X.: ‘Short and robust directional couplers designed by shortcuts to adiabaticity’, Optics Express, 2014, 22, (16), pp. 18849-18859
29 Tseng, S.-Y.: ‘Robust coupled-waveguide devices using shortcuts to adiabaticity’, Optics Letters, 2014, 39, (23), pp. 6600-6603
30 Chen, X., Wen, R.-D., and Tseng, S.-Y.: ‘Analysis of optical directional couplers using shortcuts to adiabaticity’, Optics Express, 2016, 24, (16), pp. 18322-18331
31 Pan, T.-H., and Tseng, S.-Y.: ‘Short and robust silicon mode (de) multiplexers using shortcuts to adiabaticity’, Optics Express, 2015, 23, (8), pp. 10405-10412
32 Longhi, S.: ‘Quantum‐optical analogies using photonic structures’, Laser & Photonics Reviews, 2009, 3, (3), pp. 243-261
33 Cooper, M.L., and Mookherjea, S.: ‘Numerically-assisted coupled-mode theory for silicon waveguide couplers and arrayed waveguides’, Optics Express, 2009, 17, (3), pp. 1583-1599
34 Martínez-Garaot, S., Ruschhaupt, A., Gillet, J., Busch, T., and Muga, J.: ‘Fast quasiadiabatic dynamics’, Physical Review A, 2015, 92, (4), pp. 043406
35 Sun, X., Liu, H.-C., and Yariv, A.: ‘Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system’, Optics Letters, 2009, 34, (3), pp. 280-282
36 Born, M., and Fock, V.: ‘Beweis des adiabatensatzes’, Zeitschrift für Physik A Hadrons and Nuclei, 1928, 51, (3), pp. 165-180
校內:2022-07-01公開