簡易檢索 / 詳目顯示

研究生: 賴力嘉
Lai, Li-Chia
論文名稱: 2016 年Mw 6.4 美濃地震觸發褶皺逆衝帶的淺層構造滑動所產生的反向變形
Antithetic deformation in the shallow structure of a fold-and-thrust belt triggered by 2016 Mw 6.4 Meinong earthquake
指導教授: 饒瑞鈞
Rau, Ruey-Juin
共同指導教授: 景國恩
Ching, Kuo-En
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 107
中文關鍵詞: 美濃地震反向變形高頻GNSS資料密集GNSS移動站淺層構造觸發滑動機制
外文關鍵詞: Meinong earthquake, antithetic deformation, high-rate GNSS data, triggering mechanism of shallow structure
相關次數: 點閱:123下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 規模 > 6.5的地震常在發震斷層以外的地方觸發構造滑動,進而造成震源區以外的地表變形及破壞,然而這些構造往往因為觀測資料的不足,使我們難以討論其變形的原因。2016年2月6日,規模6.4,深度14.6公里的美濃地震受到盲斷層的錯動而發生在臺灣西南部,InSAR同震位移場顯示此地震大部分之地表變形呈現向西運動,然而在震央以西20-35 公里處的新化斷層及關廟市區的南北兩側卻出現局部反向向東的運動。本研究團隊於2016年美濃地震前三天在新化斷層周圍完成70個間距400-700公尺的GNSS移動站建置及施測,並於地震發生後一個月內完成了第二次的施測。本研究團隊也在美濃地震前5個月於新化斷層沿線架設9個單雙頻GNSS連續站觀測網。本研究結合研究區域70個密集GNSS移動站、5個單雙頻GNSS連續站、7個中央地調所的雙頻GNSS連續站及InSAR LOS同震位移來提高同震位移場之空間解析度,並透過此結果來仔細探討位於新化斷層周圍之反向變形的形成機制。本研究結果:新化地區同震位移場顯示反向變形長7 ~ 8公里,寬3 ~ 5公里,其走向與新化斷層斜交,呈北北東-南南西走向。位在反向變形上的觀測資料皆呈現約3.0 ~ 7.0 cm的東南方向水平位移,垂直方向則為0.4 ~ 4.4 cm的抬升,並且在垂直方向的變形並無明顯的邊界存在。本研究亦透過6個研究區域的高頻GNSS資料呈現反向變形的形成過程,結果顯示同震位移向東及向西的測站皆於P波抵達時開始晃動, 接著在S波抵達後5秒各測站陸續觀測到PGD伴隨著永久位移的出現,並且再經過7 秒左右各測站的晃動逐漸穩定。根據前人對研究區域的地表地質及地下構造調查,本研究認為位於那菝林背衝斷層上方,深度小於1公里的生長地層(走向 = 190˚,傾角 = 4˚~ 10˚,滑移角 = 90˚)受到美濃地震影響而觸發滑動較可能為反向變形形成的主因。對於其構造觸發滑動的機制,本研究提出兩種可能的解釋,(1)靜態應力改變超過構造強度,使其往東南方向逆衝滑動。(2)美濃地震的破裂方向性使構造受到地震波帶來的動態應力擾動,導致應力瞬間超越構造強度而使其滑動。由於靜態庫倫應力改變結果指出美濃地震對反向構造的影響微乎其微(~ 0.005 MPa),地震波觸發反向構造滑動的可能性相對較高。為了評估地震波觸發反向構造滑動的門檻值,本研究使用台灣強地動觀測網(TSMIP)所紀錄的美濃地震及甲仙地震加速度波形計算其PGV分布,並且位於反向變形上之GS29連續站時間序列顯示甲仙地震時沒有同震位移的發生,因此本研究推測觸發反向構造滑動的門檻大約介於57.2 ~ 90.0 cm/s之間。反向構造為一個相對於周遭較弱的斷層帶,若地震造成的靜態應力改變甚至是靜態與動態應力的組合影響超過其斷層強度,都有很大的機會使反向構造再活動。而在關廟市區南北兩側的向東同震位移雖然只有InSAR的觀測資料,但是其變形出現的位置很有可能與龍船背衝斷層有關,並且同樣受到地震波的觸發而滑動。

    摘要 I Extended Abstract III 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 前言 1 第二章 區域構造背景 5 2.1 2016年美濃地震 6 2.2 新化斷層 7 2.3 臺南淺層構造 11 第三章 資料與方法 15 3.1 GNSS連續站資料解算與分析 15 3.1.1 GNSS連續站資料與解算流程 16 3.1.2 GNSS連續站時間序列分析 23 3.1.3 GNSS移動站資料及解算流程 29 3.1.4 GNSS移動站時間序列分析 32 3.2 速度反演方法(Wang and Wright, 2012) 35 3.3 應變分析 40 3.4 庫倫應力計算 42 3.5 高頻GNSS連續站資料解算與分析 42 3.5.1 高頻GNSS座標解算 43 3.5.2 高頻GNSS速度波形解算 44 第四章 研究結果 45 4.1 美濃地震GNSS同震位移場 45 4.2 速度反演方法結果 48 4.3 同震應變場 52 4.4 庫倫應力改變 54 4.5 高頻GNSS連續站波形 56 4.5.1 高頻GNSS連續站位移波形 56 4.5.2 高頻GNSS連續站速度波形 60 第五章 討論 64 5.1 GNSS與InSAR資料差異及觀測結果討論 64 5.2 美濃地震地表運動的動態過程 75 5.3 探討可能造成反向變形的滑動構造 75 5.3.1 美濃地震主斷層面 76 5.3.2 新化斷層及中洲構造 80 5.3.3 那菝林背衝斷層 81 5.4 反向構造的滑動機制 83 5.4.1 靜態應力改變觸發滑動 83 5.4.2 動態應力擾動觸發滑動 85 5.5 反向構造的滑動邊界 93 第六章 結論 94 第七章 參考文獻 96 附錄 102

    林啓文、盧詩丁、石同生、劉彥求、林偉雄和林燕慧(2007)臺灣西南部的活動斷層:二萬五千分之一活動斷層條帶圖說明書。經濟部中央地質調查所特刊,第十七號,共141頁。
    林啟文(2012),臺灣南部臺南-高雄泥岩區的地質構造研究。經濟部中央地質調查所彙刊,第二十五號,第143-174頁。
    張錫齡(1962),臺灣嘉義縣中崙CL-1探井及高雄縣滴水崁TK-1探井之地下地質。臺灣石油地質,第一號,第51-65頁。
    張麗旭、周敏和陳培源(1947)民國35年12月5日台南之地震。臺灣省地質調查所彙刊,第一號,第11-18頁。
    郭俊翔、林哲民、黃雋彥、許丁友、趙書賢和溫國樑 (2017),美濃地震近震源區域的強地動與場址放大特性。國家地震工程研究中心研究成果報告,201705(105期),第29-32頁。
    陳文山、游能悌、松多信尚和楊小青(2008),地震地質與地變動潛勢分析計畫:斷層長期滑移速率與再現週期研究(1/4)(期末報告書)。經濟部中央地質調查所報告,第96-10頁。
    陳文山、游能悌和楊小青(2011),重要活動斷層帶構造特性調查研究計畫-斷層活動特性分析與評估(1/4)-期末報告書。經濟部中央地質調查所報告,第100-11號。
    景國恩、胡植慶、陳宏宇、張午龍、鄭凱謙和莊昀叡(2010),斷層活動性觀測研究第四階段-地表變形觀測資料處理分析與斷層模型反演評估。經濟部中央地質調查所109年度委辦計畫執行第四階段總報告書,共365頁。
    景國恩、李易叡、張午龍、莊昀叡、顏銀銅、莊怡蓉和邵國士(2021),重要活動斷層地區地表變形觀測與斷層潛勢評估(1/2)。經濟部中央地質調查所110年度委託專業服務期末報告書(初稿),共416頁。
    經濟部中央地質調查所(2015),20160206地震地質調查報告。經濟部中央地質調查所報告,共103頁。
    謝凱旋、洪崇勝(2010)臺灣西南部麓山帶地層與盆地架構:西南部部麓山帶的地層系統和對比問題。第6屆臺灣地層研討會論文集,第45-53頁。
    Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of geophysical research: solid earth, 121(8), 6109-6131.
    Buiter, S. J. (2012). A review of brittle compressional wedge models. Tectonophysics, 530, 1-17.
    Chen, Y. G., & Liu, T. K. (2000). Holocene uplift and subsidence along an active tectonic margin southwestern Taiwan. Quaternary Science Reviews, 19(9), 923-930.
    Ching, K. E., Johnson, K. M., Rau, R. J., Chuang, R. Y., Kuo, L. C., & Leu, P. L. (2011). Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model. Earth and Planetary Science Letters, 301(1-2), 78-86.
    Colosimo, G., Crespi, M., & Mazzoni, A. (2011). Real‐time GPS seismology with a stand‐alone receiver: A preliminary feasibility demonstration. Journal of Geophysical Research: Solid Earth, 116(B11), 1-14.
    Desbrun, M., Meyer, M., Schröder, P., & Barr, A. H. (1999). Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (pp. 317-324).
    Fialko, Y., Sandwell, D., Agnew, D., Simons, M., Shearer, P., & Minster, B. (2002). Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science, 297(5588), 1858-1862.
    Fialko, Y. (2004). Probing the mechanical properties of seismically active crust with space geodesy: Study of the coseismic deformation due to the 1992 Mw7. 3 Landers (southern California) earthquake. Journal of Geophysical Research: Solid Earth, 109(B3).
    Fuhrmann, T., & Garthwaite, M. C. (2019). Resolving three-dimensional surface motion with InSAR: Constraints from multi-geometry data fusion. Remote Sensing, 11(3), 241.
    Geng, J., Chen, X., Pan, Y., Mao, S., Li, C., Zhou, J., & Zhang, K. (2019). PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS Solutions, 23(4), 1-10.
    Gomberg, J., Reasenberg, P. A., Bodin, P. L., & Harris, R. A. (2001). Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes. Nature, 411(6836), 462-466.
    Gomberg, J., & Agnew, D. (1996). The accuracy of seismic estimates of dynamic strains: An evaluation using strainmeter and seismometer data from Piñon Flat Observatory, California. Bulletin of the Seismological Society of America, 86(1A), 212-220.
    Grapenthin, R., West, M., Tape, C., Gardine, M., & Freymueller, J. (2018). Single‐frequency instantaneous GNSS velocities resolve dynamic ground motion of the 2016 Mw 7.1 Iniskin, Alaska, earthquake. Seismological Research Letters, 89(3), 1040-1048.
    Graveleau, F., Malavieille, J., & Dominguez, S. (2012). Experimental modelling of orogenic wedges: A review. Tectonophysics, 538, 1-66.
    Harris, R. A. (1998). Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. Journal of Geophysical Research: Solid Earth, 103(B10), 24347-24358.
    Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1-3), 1-16.
    Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., & Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18.
    Huang, C. Y., Shyu, C. T., Lin, S. B., Lee, T. Q., & Sheu, D. D. (1992). Marine geology in the arc-continent collision zone off southeastern Taiwan: Implications for Late Neogene evolution of the Coastal Range. Marine Geology, 107(3), 183-212.
    Huang, C. Y., Wu, W. Y., Chang, C. P., Tsao, S., Yuan, P. B., Lin, C. W., & Xia, K. Y. (1997). Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 281(1-2), 31-51.
    Huang, C. Y., Yuan, P. B., Lin, C. W., Wang, T. K., & Chang, C. P. (2000). Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325(1-2), 1-21.
    Huang, S. T., Yang, K. M., Hung, J. H., Wu, J. C., Ting, H. H., Mei, W. W., Hsu, S. H., & Lee, M. (2004). Deformation front development at the northeast margin of the Tainan basin, Tainan–Kaohsiung area, Taiwan. Marine Geophysical Researches, 25(1), 139-156.
    Huang, M. H., Tung, H., Fielding, E. J., Huang, H. H., Liang, C., Huang, C., & Hu, J. C. (2016). Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan. Geophysical Research Letters, 43(14), 7459-7467.
    Kanamori, H., Ye, L., Huang, B. S., Huang, H. H., Lee, S. J., Liang, W. T., ... & Yeh, T. Y. (2017). A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (Mw= 6.4). Terrestrial Atmospheric and Oceanic Sciences, 28(5), 637-650.
    Kao, H., Huang, G. C., & Liu, C. S. (2000). Transition from oblique subduction to collision in the northern Luzon arc‐Taiwan region: Constraints from bathymetry and seismic observations. Journal of Geophysical Research: Solid Earth, 105(B2), 3059-3079.
    Klobuchar, J. A. (1987). Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions on aerospace and electronic systems, (3), 325-331.
    Kreemer, C., Holt, W. E., & Haines, A. J. (2003). An integrated global model of present-day plate motions and plate boundary deformation. Geophysical Journal International, 154(1), 8-34.
    Lallemand, S., & Liu, C. S. (1998). Geodynamic implications of present-day kinematics in the southern Ryukyus. Journal of the Geological Society of China, 41, 551-564.
    Le Béon, M., Huang, M. H., Suppe, J., Huang, S. T., Pathier, E., Huang, W. J., Chen, C. L., Fruneau B., Baize, S., Ching, K. E., & Hu, J. C. (2017). Shallow geological structures triggered during the Mw 6.4 Meinong earthquake, southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 28(5), 663-681.
    Lee, S. J., Yeh, T. Y., & Lin, Y. Y. (2016). Anomalously large ground motion in the 2016 ML 6.6 Meinong, Taiwan, earthquake: A synergy effect of source rupture and site amplification. Seismological Research Letters, 87(6), 1319-1326.
    Lin, K. C., Hu, J. C., Ching, K. E., Angelier, J., Rau, R. J., Yu, S. B., Tsai, T. H., Shin, T. R., & Huang, M. H. (2010). GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi‐Chi earthquake in Taiwan. Journal of Geophysical Research: Solid Earth, 115, B07404.
    Lu, C. H., Ni, C. F., Chang, C. P., Yen, J. Y., & Chuang, R. Y. (2018). Coherence difference analysis of sentinel-1 SAR interferogram to identify earthquake-induced disasters in urban areas. Remote Sensing, 10(8), 1318.
    Mouthereau, F., Lacombe, O., Deffontaines, B., Angelier, J., & Brusset, S. (2001). Deformation history of the southwestern Taiwan foreland thrust belt: insights from tectono-sedimentary analyses and balanced cross-sections. Tectonophysics, 333(1-2), 293-322.
    Niell, A. E. (1996). Global mapping functions for the atmosphere delay at radio wavelengths. Journal of geophysical research: solid earth, 101(B2), 3227-3246.
    Nikolaidis, R. (2002). Observation of geodetic and seismic deformation with the Global Positioning System. University of California, San Diego.
    Oliver, M. A., & Webster, R. (1990). Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information System, 4(3), 313-332.
    Prescott, W. H., Savage, J. C., & Kinoshita, W. T. (1979). Strain accumulation rates in the western United States between 1970 and 1978. Journal of Geophysical Research: Solid Earth, 84(B10), 5423-5435.
    Rau, R. J., Wen, Y. Y., Ching, K. E., Hsieh, M. C., Lo, Y. T., Chiu, C. Y., & Hashimoto, M. (2022). Origin of coseismic anelastic deformation during the 2016 Mw 6.4 Meinong Earthquake, Taiwan. Tectonophysics, 229428.
    Saastamoinen, J. (1973). Contributions to the theory of atmospheric refraction. Bulletin Géodésique (1946-1975), 107(1), 13-34.
    Sagiya, T., Miyazaki, S. I., & Tada, T. (2000). Continuous GPS array and present-day crustal deformation of Japan. Pure and applied Geophysics, 157(11), 2303-2322.
    Shaw, J. H., Connors, C., & Suppe, J. (2005). Seismic interpretation of contractional fault-related folds: an AAPG seismic atlas. American Association of Petroleum Geologists Studies in Geology, 53, 156.
    Shen, Z. K., Jackson, D. D., & Ge, B. X. (1996). Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. Journal of Geophysical Research: Solid Earth, 101(B12), 27957-27980.
    Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., & Cheng, C. T. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3).
    Shyu, J. B. H., Yin, Y. H., Chen, C. H., Chuang, Y. R., & Liu, S. C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 31(4), 469-478.
    Suppe, J. O. H. N., Schaer, J. P., & Rodgers, J. (1987). The active Taiwan mountain belt. The anatomy of mountain ranges, 277-293.
    Suppe, J., C. D. Connors, and Y. Zhang, (2004). Shear fault-bend folding. In: McClay, K. R. (Ed.), Thrust Tectonics and Hydrocarbon Systems, AAPG Memoir 82, 303-323.
    Teng, L. S. (1987). Stratigraphic records of the late Cenozoic Penglai orogeny of Taiwan, Acta Geol. Taiwan., 25, 205–224.
    Teng, L. S. (1990), Late Cenozoic arc-continent collision in Taiwan, Tectonophysics, 183, 57–76.
    Toda, S., Stein, R. S., Sevilgen, V., & Lin, J. (2011). Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide. US Geological Survey open-file report, 1060(2011), 63.
    Tsai, M. C., Yu, S. B., Shin, T. C., Kuo, K. W., Leu, P. L., Chang, C. H., & Ho, M. Y. (2015). Velocity Field Derived from Taiwan Continuous GPS Array (2007-2013). Terrestrial, Atmospheric and Oceanic Sciences, 26(5), 527-556.
    U.S. Geological Survey, (2016). M 6.4 - 25 km SE of Yujing, Taiwan: W-phase Moment Tensor at https://earthquake.usgs.gov/earthquakes/eventpage/us20004y6h/moment-tensor (Accessed January 2022).
    Wang, H., & Wright, T. J. (2012). Satellite geodetic imaging reveals internal deformation of western Tibet. Geophysical Research Letters, 39(7), L07303.
    Xu, S., Fukuyama, E., Ben-Zion, Y., & Ampuero, J. P. (2015). Dynamic rupture activation of backthrust fault branching. Tectonophysics, 644, 161-183.
    Xu, X., Sandwell, D. T., & Smith‐Konter, B. (2020). Coseismic displacements and surface fractures from Sentinel‐1 InSAR: 2019 Ridgecrest earthquakes. Seismological Research Letters, 91(4), 1979-1985.
    Yu, S. B., Kuo, L. C., Punongbayan, R. S., & Ramos, E. G. (1999). GPS observation of crustal deformation in the Taiwan‐Luzon region. Geophysical Research Letters, 26(7), 923-926.
    Yue, L. F., & Suppe, J. (2014). Regional pore-fluid pressures in the active western Taiwan thrust belt: a test of the classic Hubbert–Rubey fault-weakening hypothesis. Journal of Structural Geology, 69, 493-518.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE