簡易檢索 / 詳目顯示

研究生: 林揚凱
Lin, Yang-Kai
論文名稱: 摻鐿全光纖雷射腔之蝕刻製程架構改善研究
Optimization of the etching process of an all-fiber Laser cavity
指導教授: 蔡宗祐
Tsai, Tzong-Yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 75
中文關鍵詞: 蝕刻製程全光纖雷射976奈米連續波雷射摻鐿光纖
外文關鍵詞: Etching process, all-fiber laser system, CW 976-nm laser, Yb-doped fiber
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文使用全光纖雷射系統,使用cladding pump技術,激發摻鐿光纖產生976-nm的CW雷射。摻鐿光纖在模態競爭下,使用較長的長度將會率先產生1030-nm四階雷射,且使用cladding pump系統使摻雜粒子吸收效率降低,因此本篇論文主要目的使用氫氟酸蝕刻縮減摻鐿光纖的直徑,提升摻雜粒子對泵浦光源的吸收,並且改善摻鐿光纖的蝕刻製程,最佳化蝕刻後泵浦吸收效率,使雷射效率提升。我們更換雷射架構,使用步進馬達蝕刻摻鐿光纖,蝕刻後雷射的量測證實換了架構後雷射效率得到提升,由8.2%提升到10.26%;步進馬達製作的taper region過長,造成摻鐿光纖部分的吸收效率較低,因此更換馬達為Z825B,將馬達轉速度調整更緩慢,縮短taper region長度後,雷射效率由步進馬達10.26%提升至15.09%;泵浦光源的能量在蝕刻後光纖傳遞,傳遞到taper region內60微米以下時能量損耗開始增加,因此使用變速度兩段式的蝕刻,將60微米以下的taper region斜率製作更緩和,並將後段的光纖蝕刻至更細提升泵浦吸收效率,使用變速度兩段式蝕刻後,雷射效率由15.09%提升到18.66%;在改善了蝕刻製程後,雷射效率由去年的8.2%提升到18.66%,證實能夠提升雷射的表現。

    This thesis uses all fiber laser system with cladding pump technique. We use 915-nm multimode laser diode as a pumping source to pump Ytterbium doped fibers. Our goal is to generate 976-nm CW laser. Considering mode competition, we can’t use longer Ytterbium doped fiber. Besides, using cladding pump system leads to lower pump efficiency of doped fibers. Therefore, our main purpose is to increase pump intensity by etching fibers with 24.5% HF. Improving laser performance by optimizing etching process. We get familiar with etching process and fiber characteristic after etching by transmission experiment. We found that PIA25 motor was not suitable for our etching system. We can keep transmission about 70% etching by step motor when cladding diameter is less than 40 micron. We improved slope efficiency from 8.2% to 10.26% after we changed laser scheme. Tapered region made by step motor was too long that some particles’ absorption strength was too low. Therefore, we changed to Z825B motor for slower motor speeds. After adjusting tapered region length, we improved laser efficiency from 10.26% to 15.09%. Laser power improved from 450mW to 622mW. After that, we found that the pump power loss will increase when going through the region less than 60 micron. Therefore, we use various speeds etching to get smoother tapered region and less tapered angle. Besides, we etched the fiber thinner to promote pump intensity. We improved laser efficiency from 15.09% to 18.66%. After improving etching process, we improved laser efficiency from 8.2% to 18.66% and laser power from 320mW to 789mW.

    摘要 I 致謝 XI 圖目錄 XIV 表目錄 XVI 符號表 XVII 第1章 緒論 1  1-1前言 1  1-2研究動機 3 第2章 原理 6  2-1雷射原理 6  2-2模態競爭 8  2-3 976nm 摻鐿光纖CW雷射架構 10  2-4雷射模擬推導 11 第3章 蝕刻穿透率測試 21  3-1 實驗設計 21  3-2 壓電式致動馬達PIA25及步進馬達 23  3-3蝕刻與測量 25 3-3-1蝕刻 25 3-3-2測量 27  3-5步進馬達蝕刻 33  3-6結論 36 第4章 雷射架構改善 37  4-1先前架構 37  4-2 改善後雷射架構 39 第5章 摻鐿光纖雷射實驗 42  5-1摻鐿光纖蝕刻 42 5-1-1摻鐿光纖蝕刻實驗 42 5-1-2摻鐿光纖雷射量測方法 45  5-2步進馬達雷射結果與討論 45  5-3Z825B馬達介紹 50  5-4 Z825B蝕刻摻鐿光纖雷射實驗結果 55  5-5步進馬達與Z825B雷射效率比較 58  5-6雷射效率改善 61  5-7 變速度兩段式蝕刻 63  5-8結論 67 第6章 總結 69  6-1成果與討論 69  6-2 未來展望 70 參考文獻 73

    [1] C. J. Koester and E. Snitzer, “Amplification in a fiber laser,”
    Appl. Opt. 3, 1182–1186 (1964).
    [2] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "DOUBLE CLAD, OFFSET CORE Nd FIBER LASER," in Optical Fiber Sensors, New Orleans, Louisiana, 1988, p. PD5
    [3] P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
    [4] J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson, "High-power and wavelength-tunable operation of an Er,Yb fiber laser using a volume Bragg grating," Optics Letters, vol. 33, pp. 1204-1206, 2008/06/01
    [5] P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, "Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm," Optics Letters, vol. 16, pp. 961-963, 1991/06/15.
    [6] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54 m,” Electron. Lett., vol. 23, pp. 1026–1028, 1987.
    [7] E. Desurvire, Erbium-Doped Fiber Amplifiers. New York: Wiley, 1994
    [8] L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, et al., "75W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976nm," Optics Letters, vol. 38, pp. 2230-2232, 2013/07/01.
    [9] M. J. F. Digonnet, Ed., Rare Earth Doped Fiber Lasers and Amplifiers. New York: Marcel Dekker, 1993
    [10] H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
    [11] S. Magne, M. Druetta, J. P. Goure, J. C. Thevenin, P. Ferdinand, and G. Monnom, “An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tunability in an external cavity,” J. Lumin., vol. 60, pp. 647–650, 1994
    [12] P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper, "Highly efficient diode-pumped ytterbium-doped yttrium aluminum borate laser," Optics Communications, vol. 174, pp. 467-470, 2000/02/01.
    [13] P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, "Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser," Optics Letters, vol. 31, pp. 226-228, 2006/01/15.
    [14] Wei Shi,* Qiang Fang, Xiushan Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their application,” OSA, 26 June 2014
    [15] Rudiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna,” Ytterbium-Doped Fiber Amplifiers,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 7, JULY 1997
    [16] R. Paschotta, D. C. Hanna, P. DeNatale, G. Modugno, M. Inguscio, and P. Laporta, “Power amplifier for 1083 nm using ytterbium doped fiber,” Opt. Commun., vol. 136, pp. 243–246, 1997.
    [17] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE Journal of Quantum Electronics, vol. 33, pp. 1049-1056, 1997.
    [18] X. Zhu, G. Zhu, W. Shi, J. Zong, K. Wiersma, D. Nguyen, et al., "976 nm Single-Polarization Single-Frequency Ytterbium-Doped Phosphate Fiber Amplifiers," IEEE Photonics Technology Letters, vol. 25, pp. 1365-1368, 2013.
    [19] D. Hanna, R. Percival, and I. Perry, “Continuous-wave oscillation of a monomode ytterbium-doped fiber laser,” Electron. Lett. 24, 1111–1113 (1988)
    [20] H. M. Pask, J. L. Archambault, D. C. Hanna, L. Reekie, P. St. J. Russell, J. E. Townsend, and A. C. Tropper, “Operation of cladding-pumped Yb3+-doped silica fiber lasers in 1 μm region,” Electron. Lett. 30, 863–865 (1994).
    [21] Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Optics Express, vol. 12, pp. 6088-6092, 2004/12/13.
    [22] J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, et al., "High power ytterbium-doped rod-type three-level photonic crystal fiber laser," Optics Express, vol. 16, pp. 17891-17902, 2008/10/27
    [23] F. Röser, C. Jauregui, J. Limpert, and A. Tünnermann, "94 W 980 nm high brightness Yb-doped fiber laser," Optics Express, vol. 16, pp. 17310-17318, 2008/10/27 2008
    [24] K. H. Ylä-Jarkko, R. Selvas, D. B. S. Son, J. K. Sahu, C. A. Codemard, J. Nilsson, et al., "A 3.5 W 977 nm Cladding-pumped Jacketed Air-Clad Ytterbium-Doped Fiber Laser," in Advanced Solid-State Photonics, San Antonio, Texas, 2003, p. 103.

    無法下載圖示 校內:2023-07-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE