簡易檢索 / 詳目顯示

研究生: 楊傳鏈
Yang, Chuan-Lien
論文名稱: 添加Sb 對Sn-Ag 無鉛銲料銲點微結構與剪切強度之影響
The Effect of Different Antimony Addition on The Microstructure and Shear Strength of Lead-free Sn-Ag Solder Joint
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 80
中文關鍵詞: 可靠度無鉛銲錫剪切測試錫銀銻銲料
外文關鍵詞: Reliability, Lead-Free solder, Sn-Ag-Sb solder, Shear Test
相關次數: 點閱:141下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究在Sn-Ag 銲料中添加不同比例的Sb (0~8.78 wt%),針對Sb 的添加對於Sn-Ag 銲料微結構及界面層成長行為之影響做深入之探討,並進行150℃高溫儲存試驗及剪切強度測試以評估其可靠度。
    本實驗以Sn2.58Ag、Sn2.82Ag1.75Sb、Sn2.87Ag4.75Sb及Sn2.7Ag8.78Sb 為實驗材料。為模擬實際銲點,因此採用一般FR-4印刷電路板為基板並以熱浸法(Hot Dipping)的方式進行接合,試件設計為單剪試件。銲接完成後進行150℃高溫儲存試驗,儲存時間分別為0、25、100、225 及625 小時。實驗結果顯示,添加1.75% Sb之後,大部分的Sb會固溶在錫基地中,而部分則會使Ag3Sn轉變為ε相Ag3(Sn,Sb)化合物,而使原本Ag3Sn 的粗大化現象得到改善;而添加量達到4.75%及8.78 %時,銲料基地中會明顯生成SbSn 化合物,大小約1~2μm,此化合物在150℃高溫儲存下並沒有明顯粗大化的現象。銲料之微硬度值會隨著Sb 的添加而逐漸增加,由HV 13.2 (Sn2.58Ag)上升至HV 25.4(添加8.78% Sb)。高溫儲存試驗結果顯示,隨著高溫儲存時間的增加,銲接點之界面層的厚度與時間的平方根呈線性關係,且粗糙度亦隨之增加;而隨著Sb 添加量的增加,金屬間化合物層的成長速率會隨之降低,同時Sb 原子會有擴散至界面層之現象。
    未經熱儲存之銲點剪切強度隨著Sb 的添加量增加而提升,強度由27.8 Mpa (Sn2.58Ag)提升至29 MPa (1.75% Sb)、30.4 MPa (4.75% Sb)及43.4 MPa (8.78% Sb);經由斷口分析發現,銲點均是由銲料與金屬間化合物Cu6Sn5 之界面開裂,形成韌窩之破斷形貌。

    Abstract
    The goal of this research is to evaluate the effect of Sn-Ag solder with different Sb addition(0~8.78wt%) on microstructure, intermetallic compound(IMC) and mechanical properties. Simultaneously the reliability and heat-resistance ability of solder joint with different Sb addition will be evaluated by high temperature storage test.
    There are four solder: Sn2.58Ag, Sn2.82Ag1.75Sb, Sn2.87Ag4.75Sb, and Sn2.7Ag8.78Sb in this research. To simulate the true Solder joint, we used the FR-4 PCB as the substrate material and joint by hot dipping method. The design of the shear specimen is single-lap shear specimen. High temperature storage test is performed after soldering. The storage temperature are 150℃, and the storage time are 0, 25, 100, 228 and 625 hrs respectively. Experimental results show that Sn-Ag solder with 1.75% Sb addition, most of Sb addition is solved in β-Sn matrix, and the rest makes the Ag3Sn converting to ε(Ag3(Sn,Sb)) ternary compound. The coarse of Ag3Sn would be improved. Sn-Ag solder with the Sb addition reach 4.75% and 8.78%, the SbSn compound will form in β-Sn matrix. The growing behavior of SbSn in 150℃ heat storage is not apparent. The Vickers Hardness of Solder increases with the ratio of Sb addition, the hardness value is HV 13.2 (Sn2.58Ag) and HV 25.4(with 8.78% Sb addition). High temperature storage test shows that the thickness of IMC is proportional to the square root of storage time, and the IMC layer becomes more roughed. The growing rate of IMC layer decreases with the increase in Sb addition, and Sb atom diffuse to IMC layer.
    The shear strength of as-soldered solder joints increase with the ratio of Sb addition. The shear strength value is 27.8 (0%Sb), 29 (1.75%Sb), 30.5 (4.75%Sb) and 43.4(8.78%Sb) MPa respectively. Fractographic analysis showed that the fracture occurre on Cu6Sn5/Solder interface when solder joints have shear force, and the fracture surface accompanied with elongated dimple formation.

    口試合格證明書------------------------------------------------------------------------ I 中文摘要-------------------------------------------------------------------------------- II 英文摘要------------------------------------------------------------------------------- III 致謝-------------------------------------------------------------------------------------IV 總目錄-----------------------------------------------------------------------------------V 圖目錄---------------------------------------------------------------------------------VII 表目錄-----------------------------------------------------------------------------------X 一、前言-------------------------------------------------------------------------------- 1 二、文獻回顧-------------------------------------------------------------------------- 4 2-1 無鉛銲錫發展概況------------------------------------------------------- 5 2-2 Sn-Ag-Sb 三元合金系--------------------------------------------------- 12 2-3 剪切強度與疲勞測試方法--------------------------------------------- 17 三、實驗步驟與方法---------------------------------------------------------------- 25 3-1 實驗規劃----------------------------------------------------------------- 25 3-2 實驗參數----------------------------------------------------------------- 28 3-3 銲料熔煉與試件製備-------------------------------------------------- 29 3-4 實驗分析----------------------------------------------------------------- 30 四、結果討論------------------------------------------------------------------------- 32 4-1 試驗銲料之成份分析-------------------------------------------------- 32 4-2 Sn2.58Ag 銲料之特性分析-------------------------------------------- 34 4-3 Sn-Ag-Sb 銲料之顯微結構-------------------------------------------- 42 4-4 界面層觀察與成長----------------------------------------------------- 53 4-5 銲點機械性質----------------------------------------------------------- 59 4-6 斷口分析----------------------------------------------------------------- 64 五、結論------------------------------------------------------------------------------- 71 六、建議與未來方向---------------------------------------------------------------- 73 七、參考文獻------------------------------------------------------------------------- 74

    1. N. C. Lee, “Getting Ready for Lead-free Solder,” Soldering & Surface Mount Technology, No. 26, 1997.7, pp.65-68
    2. 咎世蓉, "無鉛銲錫在電子封裝產品的應用與發展現況," 1999 材料年會論文集, 台灣, 新竹, 工研院, 1999.12
    3. S. Jin, “Developing Lead-Free Solders: A Challenge and Opportunity,” JOM: the Journal of the Minerals, Metals & Materials Society, Vol.45, 1993.7, pp.13
    4. Dennis R. Olsen and Keith G. Spanjer, United States Patent, Patent Number : 4,170,472, 1979.10
    5. Dennis R.Olsen and Keith G. Spanjer, “Improved Cost Effectiveness and product Reliability Through Solder Alloy Development,” Solid State Technology, Vol. 1.24 , No. 9, 1981.9
    6. Hyun-Ki An, Jae-ho Han and In-chul Kim, United States Patent, Patent Number : 6,033,488, 2000.3
    7. 饒慧美, “添加Sb、Cu 對無鉛銲料Sn-Ag 銲點之機械性質及微結構研究,” 國立成功大學機械研究所, 碩士論文, 2000.6
    8. 李驊登, 陳明宏, 饒慧美, "Sn-3Ag-xSb銲料與銅接合附著強度變化," 第17屆中國機械工程學會學術研討會, 新興工程技術論文集,台灣、高雄、高雄第一科大, 2000.12
    9. 李驊登, 陳明宏, 饒慧美, "Sn-3Ag-xSb 銲接點微結構探討," 第17屆中國機械工程學會學術研討會, 新興工程技術論文集, 台灣、高雄、高雄第一科大, 2000.12
    10. 廖天龍, "添加Sb 對Sn-Ag 無鉛銲料之銲點剪切強度研究'," 國立成功大學機械研究所, 碩士論文, 2001.6
    11. Z. Miric, and A. Grusd, “Lead-Free Alloys,” Soldering & Surface Mount Technology, Vol. 10, No. 1, 1998, pp.19-25
    12. 陳信文, "無鉛銲料簡介," 電子與材料, 第一期, 1999, pp.74-77
    13. K. Kang and et al., “Lead-Free Solders for Electronic Packaging,” Journal of Electronic Materials, Vol. 23, No. 8,1994, pp.701-707
    14. M. Abtew, G.. Selvaduray, “Lead-Free Solders in Microelectronics,” Materials Science and Engineering, Vol. 27, 2000, pp.95-141
    15. Sung K. Kang and Amit K. Sarkhel, "Lead(Pb)-Free Solders for Electronic Packaging," Journal of Electronic Materials, Vol. 23, No.8, 1994, pp.701-707
    16. Yoshiharu Kariya and Masahisa Otsuka, "Mechanical Fatigue Characteristics of Sn-3.5Ag-X(X=Bi, Cu, Zn and In) Solder Alloys," Journal of Electronic Materials, Vol.27, No.11, 1998, pp.1229-1235
    17. B. P. Richards, C. L. Levoguer and C. P. Hunt, “An Analysis of the Current Status of Lead-Free Soldering,” DTI Report 1999.
    18. 詹益淇、莊東漢, “無鉛銲錫的回顧與最新發展,” 電子月刊, 第六卷第三期, pp.226-237
    19. M. McCormack and et al., "Significantly Improved Mechanical Properties of Bi-Sn Solder Alloys by Ag-Dopng," Journal of Electronic Materials, Vol. 26, No. 8, 1997, pp.954-958
    20. Katsuaki Suganuma, "Interface Phenomena in Lead-free Soldering," 1999 Proceedings EcoDesign '99 : First International Symposium on 1999, pp.620-625
    21. Y. Miyazawa ,T. Ariga, "Microstructural Change and Hardness of Lead Free Solder Alloys," Environmentally Conscious Design and Inverse Manufacturing, 1999. Proceedings. EcoDesign '99: First International Symposium, 1999, pp.616-619
    22. Yasuyuki Miyazawa and Tadashi Ariga, “Influences of Aging Treatment on Microstructure and Hardnes of Sn-(Ag,Bi,Zn) Eutectic Solder Alloys,” Materials Transactions, Vol. 42, No.5, 2001, pp.776-782
    23. M. McCormacks, S. Jin, H. S. Chin, D. A. Machusak, "New Lead-free, Sn-Zn-In Solder Alloys," Journal of Electronic Materials, Vol.23, No.7 , 1994, pp.687-690
    24. D. R. Flanders, E. G. Jacobs, and R. F. Pinizzotto, "Activation Energies of Intermetallic Groth of Sn-Ag Eutectic Solder on Copper Substrates," Journal of Electronic Materials, Vol.26, No. 7, 1997,
    pp.883-887
    25. Wenge Yang ,Lawwrence E. Felton, Robert W. Messler, JR., "The Effect of Soldering Process Variable on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints," Journal of Electronic Materials, Vol.24, No. 10, 1995, pp.1465-1472
    26. Sungho Jin, Mark Thomas McCormack, United States Patent, Patent Number : 5,762,866, 1998.6
    27. M. McCormack, S. Jin, "Improved Mechanical Properties in New, Pb-free Solder Alloys," Journal of Electronic Materials, Vol.23, No.8 , 1994, pp.715-720
    28. P. T. Vianco, K. L. Erickson and P. L. Hopkins, "Solid State Intermetallic Compound Growth between Copper and High Temperature, Tin-rich Solders-Part I : Experimental Analysis," Journal of Electronic Materials, Vol.23, No.8 , 1994, pp.721-727
    29. 編輯室, "無鉛焊接的開發動向," 電子與材料, 第一期, 1999,pp.78-84
    30. D. Bruce Masson and Brian K. Kirkpatrick, "Equilibrium Solidification of Sn-Ag-Sb Thermal Fatigue-Resistant Solder Alloys," Journal of Electronic Materials, Vol. 15, No. 6, 1986, pp.349-353
    31. Shigemasa Kusabiraki and Manabu Sumita, United States Patent, Patent Number : 6,229,248, 2001.5
    32. Stephen G. Gonya and et al., United States Patent, Patent Number : 5,393,489, 1995.2
    33. William E. McCullough, United States Patent, Patent Number : 2,210,593, 1939.7
    34. G. Petzow and G. Rffenberg edit, Ternary Alloys Vol.2, VCH Verlagsgesellschaft , 1998
    35. C. Oh and et al., “Thermodynamic Study on the Ag-Sb-Sn System,” Journal of alloys and compounds, Col. 238, No. 1-2, 1996, pp.155-166
    36. John H. L. et al., “Thermal Cycling Aging Effect on Microstructural and Mechanical Properties of a Single PBGA Joint Specimen”, IEEE Trans., 2001
    37. N. Iosipescu, “New Accurate Procedure for Single Shear Testing of Metals,” Journal of Materials, Vol. 3, No. 2, 1967, pp.537-567
    38. ASTM Standard D5379/D5379M-98, “Standard Test Method for Shear properties of Composite Materials by the V-Notched Beam Method,” American Society for Testing of Materials, 1998
    39. ASTM Standard C1292-00, “Standard Test Method for Shear strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperature,” American Society for testing of Materials American Society for Testing of Materials, 2000
    40. J. S Hwang, Z.Guo and G. Lucey, “Strengthened Solder Materials for Electronic Packaging,” Surface Mount International Conference held at San Jose, California, USA, in Auguet/September, 1993, pp.45-51
    41. Peter L. Hacke and et al., “Modeling of Thermomechanical Fatigue of 63Sn-37Pb Alloy”, Thermomechanical Fatigue Behavior of Materials Vol.1, Huseyin Sehitoglu Edit, ASTM STP 1186, 1993
    42. ASTM F1269-89, “Test Methods for Destructive Shear Testing of Ball Bonds,” American Society for testing of Materials, 1995
    43. J. R. Oliver and et al., “Effect of Thermal Aging on The Shear Strength of Lead-Free Solder Joint,” International Symposium on Advanced Packaging Materials, 2000, pp.152-157
    44. Karl F. Seeling et al, United States Patent, Patent Number : 5,352,407, 1994.10
    45. J. W. Morris, “Fatigue Lives on 60Sn/40Pb Solder Joints Made with Different Cooling Rates,” Transactions of the ASME, J. of Electronic Packaging, vol. 114, June 1992, pp.104-108
    46. Z. Mei, J. W. Morris, Jr., M. C. Shine, “Superplastic Creep of Eutectic Tin-Lead Solder Joints," Journal of Electronic Packaging, Vol.113, 1991.6, pp.109-114
    47. A. Gilat and K. Hrishna, “Test Eutectic Tin-Lead in Pure Shear,” ASME Advances in Electronic Packing Eep., Vol. 4-2, 1993, pp.1017-1018
    48. Z. Guo and et al., “Plastic Deformation Kinetics of Eutectic Pb-Sn Solder Joints in Monotonic Loading and Low-Cycle Fatigue,” Transactions of ASME-Journal of Electronic Packaging, Vol. 114, 1992.6, pp.112-117
    49. D. J. Barnard and I. E. Anderson, “A Shear Test Method to Measure Shear Strength of Metallic Materials and Solder Joints Using Small Specimens,” Scripta Materialia. Vol. 40. No. 3. 1999, pp.271-276
    50. T. Reinokainen, M. Poech, and et al., “A Finite Element and Experimental Analysis of Stress Distribution in Various Shear Tests for Solder Joints,” Transactions of the ASME, Vol. 120, 1998,
    pp.106-113
    51. K. Suganuma “Interface Phenomena in Lead-free Soldering,” Enviromentally Conscious Design and Inverse Manufacturing 1999 Proceedings. EcoDesign '99:First International Symposium On, 1999, pp.620 –625
    52. Metals Handbook, 10th Edition, Vol.3 Alloy Phase Diagrams, American Society for Metals, Metals Park, 1992
    53. S. Chada et al, “Copper Substrate Dissolution in Eutectic Sn-Ag Solder and Its Effect on Microstructure,” Journal of Electronic Materials, Vol. 29, No. 10, pp. 1214-1221, 2000
    54. Metals Handbook, 8th Edition, Vol.8 Metallography, Structures and Phase Diagrams, American Society for Metals, Metals Park, 1976
    55. D.R. Frear, S.N. Burchett, H.S. Morgan, and J.H. Lau, eds., The Mechanics of Solder Alloy Interconnects, p. 60 (Van Nostrand Reinhold, New York, 1994)
    56. P. T. Vianco, K.L. Erickson, and P. L. Hopkins “Solid State Intermetallic Compound Growth Between Copper and High Temperature, Tin-Rich Solders-Part 1:Experimental Journal of Electronic Materials,” Vol.23, No.8, 1994
    57. Z. Mei, A. J. Sunwoo, and J. W. Morris, Jr., "Analysis of Low-Temperature Intermetallic Growth in Copper-Tin Diffusion Couples," Metallurgical Transactions A, Vol. 23A, 1992.3, pp.857-864
    58. 陳明宏、李驊登、饒慧美、廖天龍, “界面金屬間化合物對錫銲接點破壞行為之影響,” 第七屆中華民國破壞力學研討會論文集,2002.
    59. Hwa-Teng Lee, Ming-Hung Chen, "Influence of Intermetallic Compounds on the Adhesive Strength of Solder Joints," (To be published in Material Science and Engineering A, 2002)

    下載圖示 校內:2003-07-05公開
    校外:2003-07-05公開
    QR CODE