| 研究生: |
楊詠新 Yang, Yong-xin |
|---|---|
| 論文名稱: |
不完美品質下易腐商品經濟訂購量之探討 Economic Order Quantity of perishable products with imperfect quality |
| 指導教授: |
張秀雲
Chang, Shiow-yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 易腐性 、經濟訂購量 、不完美品質 |
| 外文關鍵詞: | perishable, EOQ/EPQ, imperfect quality |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對易腐性產品建立不完美品質之經濟訂購量模式,本研究以經濟訂購量模式為基礎,加入易腐性產品之存貨模式,將瑕疵物品以分批的方式進行處理,降低存貨成本,並求解出最佳經濟訂購量與最佳分批處理次數。本研究建構的模式共有三種,分別是易腐性產品之經濟訂購量、瑕疵品分批處理之模式以及易腐性產品採瑕疵品分批處理之模式,此三種模式的適用性不僅侷限於易腐性或不完美產品,只需要將參數設定調整至適合產品的範圍即可套用本模式以進行求解。
從數值範例可以知道各個模式之間的關聯性,以及應用的方式,再由敏感度分析可以了解到各個參數與決策變數的相關性及其強弱程度,比較特別的是存貨成本與瑕疵品分批處理數沒有相關性,這與一般的想法有所不同,通常認為存貨成本越大勢必要將瑕疵品分批處理數提高才能降低存貨成本,然而存貨成本又會影響到經濟訂購量,存貨成本大會使得經濟訂購量下降,而訂購量下降便會使得瑕疵品分批處理數降低,也就是在一連串的關係下,存貨成本與瑕疵品分批處理數是沒有關聯性。
雖然存貨成本與瑕疵品分批處理數沒有相關性,但是在探討利潤的差異時,存貨成本的大小會決定瑕疵品分批處理的重要性,亦即當存貨成本越大,進行瑕疵品分批處理越重要。
This paper considers EOQ (Economic Order Quantity, EOQ) models for perishable product with imperfect quality where cumulative holding cost is a nonlinear function of time. Since handling the imperfect products in batches could reduce the holding cost and have better profits, this paper develops three models, including EOQ of perishable products, handling imperfect products in batches and handling the perishable products with imperfect quality in batches, and finds the optimal ordering quantity and the number of batches to handle the imperfect products. This paper illustrates the application of developed models by numerical examples and sensitivity analysis.
As the result, we find that holding cost do not have the correlation with the numbers of batches to handle the imperfect products. In general, we thought that holding cost can be reduced by larger number of batches. But on another way, we have to notice that larger holding cost can decrease the order quantity. When the ordering quantity decreased, the number of batches would be lower. So, we can explain that the holding cost do not have the correlation with the numbers of batches in this paper.
Comparing whether to handle the imperfect products in batches or not, higher holding cost would affect more on the difference of profit. It means that the higher holding cost is, the more important to handle the imperfect products in batches.
中文部分:
1. 曾詩凱,「損耗性商品在數量條件下延遲付款模式之研究」,國立成功大學工業管理研究所碩士論文,中華民國九十五年六月。
2. 鄭家昌,「不可靠生產系統之經濟批量模式─考慮瑕疵品及重製製程」,國立成功大學工業管理研究所碩士論文,中華民國九十一年六月。
3. 鄭春生,品質管理,第二版,臺北市:育友,中華民國八十八年。
英文部分:
1. Abad, P.L., Optimal lot size for a perishable food under conditions of finite production and partial backordering and lost sale. Computers and Industrial Engineering, 38, 457-465, 2000.
2. Adachi, Y., Nose, T., Kuriyama, S., Optimal inventory control policy subject to different selling prices of perishable commodities. International Journal of Production Economics, 60-61, 389-394, 1999.
3. Anjos, M.F., Cheng, R.C.H., Currie, C.S.M., Optimal pricing policies for perishable products. European Journal of Operational Research, 166, 246-254, 2005.
4. Ben-Daya, M., Hariga, M., Economic lot scheduling problem with imperfect production processes. Journal of the Operational Research Society, 51, 875-881, 2000.
5. Bose, S., Goswami, A., Ghaudhuri, K.S., An EOQ model for deteriorating items with linear time-dependent demand rate and shortages under inflation and time discounting. The Journal of the Operational Research Society, 46(6), 771-782, 1995.
6. Chan, W.M., Ibrahim, R.N., Lochert, P.B., A new EPQ model: integrating lower pricing, rework and reject situations. Production Planning and Control, 14(7), 588-595, 2003.
7. Edwin Cheng, T.C., Li, J., Wang, S., Analysis of postponement strategy for perishable items by EOQ-based models. International Journal of Production Economics, 107, 31-38, 2007.
8. Dye, C.Y., Ouyang, L.Y., An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging. European Journal of Operational Research, 163, 776-783, 2005.
9. Eroglu, A., Ozdemir, G., An economic order quantity model with defective items and shortages. International Journal of Production Economics, 106, 544-549, 2007.
10. Ferguson, M., Jayaraman, V., Souza, G.C., Note: An application of the EOQ model with nonlinear holding cost to inventory management of perishables. European Journal of Operational Research, 180, 485-490, 2007.
11. Giri, B.C., Chaudhuri, K.S., Deterministic models of perishable inventory with stock-dependent demand rate and nonlinear holding cost. European Journal of Operational Research, 105, 467-474, 1998.
12. Goyal, S.K., Economic order quantity under conditions of permissible delay in payments. The Journal of the Operational Research Society, 36(4), 335-338, 1985.
13. Goyal, S.K., Giri, B.C., Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134, 1-16, 2001.
14. Juran, J.M., The quality trilogy. Quality progress, 19, 19-24, 1986.
15. Katagiri, H., Ishii, H., Sakawa, M., An inventory problem with a perishable commodity and a nonperishable one. Asia Pacific Management Review, 8(4), 499-507, 2003.
16. Khouja, M., The single-period (news-vendor) problem: literature review and suggestions for future research. OMEGA The International Journal of Management Science, 27, 537-553, 1999.
17. Lee, H. L., Rosenblatt, M. J., Simultaneous determination of production cycle and inspection schedules in a production systems. Management Science, 33(9), 1125-1136, 1987.
18. Leung, S.C.H., NG, W.L., A stochastic programming model for production planning of perishable products with postponement. Production Planning and Control, 18(3), 190-202, 2007.
19. Liao, H., Tsai, C., Su, C., An inventory model with deteriorating items under inflation when a delay in payment is permissible. International Journal of Production Economics, 63, 207-214, 2000.
20. Mandal, B.N., Phaujdar, S., An inventory model for deteriorating items and stock-dependent consumption rate. The Journal of the Operational Research Society, 40(5), 483-488, 1989.
21. Moon, I., Giri, B.C., Choi, K., Economic lot scheduling problem with imperfect production processes and setup times. Journal of the Operation Research Society, 53, 620-629, 2002.
22. Nahmias, S., Perishable inventory theory: Review. Operations Research, 30(4), 680-780, 1982.
23. Ouyang, L., Wu, K., Yang, C., A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Computers and Industrial Engineering, 51, 637-651, 2006.
24. Padmanabhan, G., Vrat, P., EOQ models for perishable items under stock dependent selling rate. European Journal of Operational Research, 86, 281-292, 1995.
25. Papachristos, S., Konstantaras, I., Economic ordering quantity models for items with imperfect quality. International Journal of Production Economics, 100, 148-154, 2006.
26. Pasternack, B.A., Optimal pricing and return policies for perishable commodities. Marketing Science, 4(2), 166-176, 1985.
27. Porteus, E.L., Optimal lot sizing, process quality improvement and setup cost reduction, Operations Research, 34(1), 137-144, 1986.
28. Raafat, F., Survey of literature on continuously deteriorating inventory models. The Journal of the Operational Research Society, 42(1), 27-37, 1991.
29. Rosenblat, M.J., Lee, H.L., Economic production cycles with imperfect production processes, IIE Transactions, 18, 48-55, 1986.
30. Salameh, M.K., Jaber, M.Y., Economic production quantity model for items with imperfect quality. International Journal of Production Economics, 64, 59-64, 2000.
31. Sloof, M., Tijskens, L.M.M., Wilkinson, E.C., Concepts for modeling the quality of perishable products. Trends in Food Science and Technology, 7(5), 165-171, 1996.
32. Silver, E.A., Operations research in inventory management: A review and critique. Operations Research, 29(4), 628-645, 1981.
33. Teng, J.T., On the economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 53, 915-918, 2002.
34. Van Donselaar, K., Van Woensel, T., Broekmeulen, R., Fransoo, J., Inventory control of perishables in supermarkets. International Journal of Production Economics, 104, 462-472, 2006.
35. Weiss, H., Economic order quantity models with nonlinear holding costs. European Journal of Operational Research, 9, 56-60, 1982.