| 研究生: |
蘇柏豪 Su, Po-Hao |
|---|---|
| 論文名稱: |
應用田口法於 γ型史特靈引擎之設計參數優化研究 Optimization of some important parameters of a gamma-type Stirling engine with Taguchi method |
| 指導教授: |
陳文立
Chen, Wen-Lih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | CFD模擬 、田口優化法 、γ- type史特靈引擎 |
| 外文關鍵詞: | gamma type Stirling engine, CFD, Taguchi method |
| 相關次數: | 點閱:165 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
論文題目:應用田口法於 γ型史特靈引擎之設計參數優化研究
研究生:蘇柏豪
指導教授:陳文立
此論文中分別選取三項不同的模擬輸出結果進行田口優化法的計算,其中包含引擎熱效率、移動再生器之再生效率以及引擎輸出功,而選定的引擎設計參數有四項,包含再生孔洞總面積對底板面積比、底板孔洞配置數量、引擎冷熱端溫差及引擎轉速,而其四項設計參數皆有三種設計水準,再生孔洞總面積對底板面積比設計水準為14%、17%、20%,底板孔洞配置數量設計水準為75個、105個、140個,引擎冷熱端溫差設計水準為200K、300K、400K,引擎轉速設計水準為60rpm、180rpm、300rpm,文中包含了數值模擬的設置條件、各項輸出結果搭配數值模擬結果的計算方式、田口法分析方式及驗證方法以及田口分析結果。田口法的分析結果表明,輸出功最佳化之值為129.86(W),最佳化參數配置為面積比20%、孔洞數75個、溫差400K、引擎轉速300rpm,影響程度為:引擎轉速 > 引擎冷熱端溫差 > 再生孔洞總面積對底板面積比 > 底板孔洞配置數量;熱效率最佳化之值為51.25 % ,最佳化參數配置為面積比20%、孔洞數75個、溫差400K、引擎轉速60rpm,影響程度為: 引擎冷熱端溫差 > 再生孔洞總面積對底板面積比 > 引擎轉速 > 底板孔洞配置數量;再生效率最佳化之值為67.63 % ,最佳化參數配置為面積比20%、孔洞數75個、溫差400K、引擎轉速60rpm,影響程度為: 引擎冷熱端溫差 > 引擎轉速 > 再生孔洞總面積對底板面積比引擎 > 底板孔洞配置數量。本篇論文結合田口優化法和計算流體力學,大幅度減少研究成本的同時,也能看出不同的設計參數對引擎內部熱傳、流場狀況及溫度分布的影響,不只完成模型最佳化也捕捉到各參數影響輸出結果的趨勢,對於模型最佳化和引擎參數分析的研究此篇論文很有參考價值。
關鍵字:CFD模擬、田口優化法、γ- type史特靈引擎
SUMMARY
In this study, Taguchi Method and CFD (Computational Fluid Dynamic) have been applied to a gamma type Stirling engine to understand the effects posed by several operational and geometrical parameters on engine performance and to find the optimal combinations of some important parameters. Here, thermal efficiency, regenerate efficiency and power are selected as the indicators of Taguchi Method. The optimum composition of four parameters, number of holes, area ratio, temperature difference and rotational speed, of the Stirling engine was obtained using a Taguchi's L9 orthogonal array design. CFD simulations are conducted using L9 orthogonal array with three different levels of input parameters. The ranges for each parameter were: number of holes (75-140) , area ratio (14–20%), temperature difference (200-400K) and rotational speed (60-300rpm). Finally, the analysis of results is done using “Larger-the-better” standard for the signal-to-noise ratio (SNR). The results suggest that the optimal combination of design parameters setting are: number of holes 75, area ratio 20%, temperature difference 400K and rotational speed 300rpm for power; and number of holes 75, area ratio 20%, temperature difference 400K and rotational speed 60rpm for both thermal efficiency and regenerate efficiency.
Keywords : gamma type Stirling engine, CFD, Taguchi method
[1] E. Podesser. Electricity production in rural villages with a biomass Stirling engine. Renew Energy. vol.16, issues 1- 4, pp.1049-1052, April 1999.
[2] D.Y. Goswami, F. Kreith. Handbook of energy efficiency and renewable energy. CRC Press, 2007.
[3] A. J. Organ. The air engine: Stirling cycle power for a sustainable future. Elsevier, 2007.
[4] A. Abuelyamen, R. B. Mansour. Energy efficiency comparison of Stirling engine types (α, β, and γ) using detailed CFD modeling. International Journal of Thermal Sciences, vol.132, pp.411- 423, October 2018.
[5] M. Chahartaghi, M. Sheykhi. Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases. Energy, vol.174, pp.1251–1266, May 2019.
[6] J. Bert, D. Chrenko, T. Sophy, L. L. Moyne, F. Sirot. Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium. Energy, vol.78, pp.701–712, December 2014.
[7] J. Egas, D. M. Clucas. Stirling Engine Configuration Selection. Energies, vol.11, issues 3, 584, March 2018.
[8] S. Zare, A. Tavakolpour-Saleh. Free piston Stirling engines: A review. International Journal of Energy Research,Vol.44, issue 7, pp.5039–5070, May 2019.
[9] N.C.J. Chen, F.P. Griffin. A Review of Stirling Engine Mathematical Models. OAK Ridge National Laboratory, No. ORNL, CON-135, August 1983.
[10] R. W. Dyson, S. D. Wilson, R.C. Tew. Review of Computational Stirling Analysis Methods. National Aeronautics and Space Administration, AIAA–2004 –5582, 2004.
[11] S. Alfarawi, R. Al-Dadah, S. Mahmoud. Influence of phase angle and dead volume on gamma-type Stirling engine power using CFD simulation. Energy Conversion and Management, vol.124, pp.130-140, September 2016.
[12] J.L. Salazar, W. L. Chen. A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a β-type Stirling engine. Energy Conversion and Management, vol.88, pp.177-188, December 2014.
[13] Y.B. Zhao, H.Z. Dang. CFD simulation of a miniature coaxial Stirling-type pulse tube cryocooler operating at 128Hz. Cryogenics, vol.73, pp.53-59, January 2016.
[14] W. L. Chen, K. L. Wong, Y. F. Chang. A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a low-temperature-differential γ-type Stirling engine. International Journal of Heat Mass Transfer, vol.75, pp.145-155, August 2014.
[15] W. L. Chen , K. L. Wong, L.W. Po. A numerical analysis on the performance of a pressurized twin power piston gamma-type Stirling engine. Energy Conversion and Management, vol.62, pp.84-92, October 2012.
[16] W.L. Chen , K. L. Wong, H. E. Chen. An experimental study on the performance of the moving regenerator for a γ-type twin power piston Stirling engine. Energy Conversion and Management, vol.77, pp.118-128, January 2014.
[17] W. L. Chen, Y.C. Yang, J. L. Salazar. CFD parametric study on the performance of a low-temperature differential γ-type Stirling engine. Energy Conversion and Management, vol.106, pp.635-643, December 2015.
[18] W. L. Chen. A study on the effects of geometric parameters in a low-temperature differential γ-type Stirling engine using CFD. Energy Conversion and Management, Vol.107, pp.1002-1013, April 2017.
[19] C. Y. Wu, G. M. D. Currao, W. L. Chen, C. Y. Chang, B. Y. Hu, T. H. Wang, Y. C. Chen. The application of an innovative integrated Swiss-roll-combustor/ Stirling-hot-end component on an unpressurized Stirling Engine. Energy Conversion and Management, Vol.249, 114831, December 2021.
[20] M.A. Al-Nimr, W. Al-Ammari. A novel hybrid and interactive solar system consists of a Stirling engine/vacuum evaporator thermoelectric cooler for electricity generation and water distillation. Renewable Energy, vol.153, pp.1053-1066, June 2020.
[21] A.R. Tavakolpour-Saleh, S.H. Zare, H. Bahreman. A novel active free piston Stirling engine: modeling, development, and experiment. Applied Energy, vol.199, pp.400-415, August 2017.
[22] E. Cardozo, C. Erlich, A. Malmquist, L. Alejo. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power. Applied Thermal Engineering, vol.73, issues 1, pp.671-680, December 2014.
[23] M. Renzi, C. Brandoni. Study and application of a regenerative Stirling cogeneration device based on biomass combustion. Applied Thermal Engineering, vol.67, issues 1-2, pp.341-351, June 2014.
[24] D. Vuarnoz, A. Kitanovski, C. Gonin, Y. Borgeaud, M. Delessert, M. Meinen, P. W. Egolf. Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat. Applied Energy, vol.100, pp.229-237, December 2012.
[25] A. S. Nielsen, B. T. York, B. D. MacDonald. Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios. Applied Energy, vol.253, 113577, November 2019.