簡易檢索 / 詳目顯示

研究生: 蕭建庭
Xiao, Jian-Ting
論文名稱: 基於量子干涉之高效率反向共振四波混頻
High-efficiency backward resonant four-wave mixing by quantum interference
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 四波混頻冷原子光學幫浦
外文關鍵詞: four-wave mixing, cold atoms, optical pumping
相關次數: 點閱:91下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正向共振四波混頻在雙Λ架設下,由於無法避免的自發輻射影響,有著轉換效率25%的上限。本論文中證明在使用反向配置雷射的情況下能夠有效的壓抑自發輻射,在反向雙Λ的系統中,在光學密度48的實驗條件下,得到的四波混頻轉換效率可以達到63.3%。根據理論預測,反向四波混頻在光學密度約500時有著接近100%的轉換效率,如此高效率的頻率轉換在全光學量子信號處理中有著潛在的應用性。此外,實驗中成功利用光學幫浦準備集中度95.8% 的單一賽曼態。在高光學密度的條件下,觀察到輻射捕捉效應對於居量集中的破壞。

    Resonant four-wave mixing(FWM)based on a double-Λ scheme has a maximum conversion efficiency (CE) of 25% due to unavoidable spontaneous emission. Here, we demonstrate the spontaneous emission can be greatly suppressed by arranging the applied laser beams with a backward configuration. With the backward double-Λ scheme, we observe the FWM efficiency can reach 63.3% in cold rubidium atoms with an optical depth of 48, which is the first observation of the CE exceeding 25% in the resonant
    double-Λ FWM system. According to the theoretical predictions, this backward FWM scheme can achieve near 100% CE using a medium with a large optical optical depth
    of around 500. Such an efficient frequency conversion scheme may have potential applications in all-optical quantum signal processing. Moreover, we prepare populations in a single-Zeeman state with 95.8% of concentration by using optical pumping. Under
    highly concentrated condition, we observe the potential difference between multi-Zeeman states and a single-Zeeman state.

    摘要i 英文延伸摘要ii 0.1 Electromagnetically induced transparency ii 0.2 Four-wave mixing iii 0.3 Phase mismatch iv 誌謝viii 目錄ix 表格xi 圖片xii 第1 章緒論 1 1.1 簡介 1 1.2 動機 2 第2 章基本理論 3 2.1 電磁波引發透明 3 2.2 四波混頻 9 2.2.1 正向四波混頻 11 2.2.2 反向四波混頻 14 2.3 相位不匹配理論 21 2.3.1 正向四波混頻的相位不匹配 21 2.3.2 反向四波混頻的相位不匹配 23 第3 章實驗系統與架設 26 3.1 冷原子系統 26 3.1.1 銣原子 26 3.1.2 磁光陷阱系統 27 3.2 電磁波引發透明系統 30 3.3 光學幫浦準備單一賽曼態系統 31 3.3.1 二能階吸收 32 3.3.2 地磁補償 33 3.4 反向四波混頻系統 34 第4 章實驗結果與討論 36 4.1 電磁波引發透明慢光實驗 36 4.2 光學幫浦準備單一賽曼態實驗 38 4.3 反向共振四波混頻實驗 50 4.4 單一賽曼態的反向共振四波混頻實驗 58 第 5 章 結論與展望 66 參考文獻68 附錄A 實驗光路架設與信號光校正70 附錄B 二能階吸收譜線的居量量測方法74 附錄C 賽曼效應與地磁補償78 附錄D 拉比頻率的校正與換算81 附錄E 反向四波混頻實驗的精度與驅動光推算83

    [1] H.-Y. Lo, P.-C. Su, and Y.-F. Chen, “Low-light-level cross-phase modulation by quantum
    interference,” Phys. Rev. A, vol. 81, p. 053829, May 2010.
    [2] S. G. Clark and A. S. Parkins, “Entanglement and entropy engineering of atomic twoqubit
    states,” Phys. Rev. Lett., vol. 90, p. 047905, Jan 2003.
    [3] D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev.
    A, vol. 57, pp. 120–126, Jan 1998.
    [4] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration
    of a fundamental quantum logic gate,” Phys. Rev. Lett., vol. 75, pp. 4714–4717,
    Dec 1995.
    [5] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,”
    Rev. Mod. Phys., vol. 81, pp. 865–942, Jun 2009.
    [6] S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett.,
    vol. 82, pp. 4611–4614, Jun 1999.
    [7] L. Deng and M. G. Payne, “Three-photon destructive interference in ultraslowpropagation-
    enhanced four-wave mixing,” Phys. Rev. A, vol. 68, p. 051801, Nov 2003.
    [8] H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Backward four-wave mixing in a
    four-level medium with electromagnetically induced transparency,” J. Opt. Soc. Am.
    B, vol. 23, pp. 718–722, Apr 2006.
    [9] H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,”
    Phys. Rev. A, vol. 70, p. 061804, Dec 2004.
    [10] C.-K. Chiu, Y.-H. Chen, Y.-C. Chen, I. A. Yu, Y.-C. Chen, and Y.-F. Chen, “Low-lightlevel
    four-wave mixing by quantum interference,” Phys. Rev. A, vol. 89, p. 023839, Feb
    2014.
    [11] S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically
    induced transparency,” Phys. Rev. Lett., vol. 64, pp. 1107–1110, Mar
    1990.
    [12] B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: Quantum
    switching,” Phys. Rev. Lett., vol. 84, pp. 4080–4083, May 2000.
    [13] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced
    transparency: Optics in coherent media,” Rev. Mod. Phys., vol. 77, pp. 633–673, Jul
    2005.
    [14] S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, “Enhanced cross-phase modulation
    based on a double electromagnetically induced transparency in a four-level tripod
    atomic system,” Phys. Rev. Lett., vol. 101, p. 073602, Aug 2008.
    [15] Z.-Y. Liu, Y.-H. Chen, Y.-C. Chen, H.-Y. Lo, P.-J. Tsai, I. A. Yu, Y.-C. Chen, and Y.-
    F. Chen, “Large cross-phase modulations at the few-photon level,” Phys. Rev. Lett.,
    vol. 117, p. 203601, Nov 2016.
    [16] C.-K. Chiu, Studies on EIT-based four-wave mixing at Low light Levels. Mater’s thesis,
    National Cheng Kung University, 2013.
    [17] M.-J. Lee, Y.-H. Chen, I.-C. Wang, and I. A. Yu, “Eit-based all-optical switching
    and cross-phase modulation under the influence of four-wave mixing,” Opt. Express,
    vol. 20, pp. 11057–11063, May 2012.
    [18] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional
    viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev.
    Lett., vol. 55, pp. 48–51, Jul 1985.
    [19] S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, and T. Esslinger, “Observation of
    quantized conductance in neutral matter,” Nature, vol. 517, no. 7532, pp. 64–67, 2015.
    [20] N. Poli, F. Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli, and G. M. Tino, “Precision
    measurement of gravity with cold atoms in an optical lattice and comparison with a
    classical gravimeter,” Physical Review Letters, vol. 106, no. 3, p. 038501, 2011. PRL.
    [21] U. Schneider, L. Hackermuller, J. P. Ronzheimer, S. Will, S. Braun, T. Best, I. Bloch,
    E. Demler, S. Mandt, D. Rasch, and A. Rosch, “Fermionic transport and out-ofequilibrium
    dynamics in a homogeneous hubbard model with ultracold atoms,” Nat
    Phys, vol. 8, no. 3, pp. 213–218, 2012. 10.1038/nphys2205.
    [22] D. Stadler, S. Krinner, J. Meineke, J.-P. Brantut, and T. Esslinger, “Observing the drop
    of resistance in the flow of a superfluid fermi gas,” Nature, vol. 491, no. 7426, pp. 736–
    739, 2012. 10.1038/nature11613.
    [23] C. Gabbanini, A. Fioretti, A. Lucchesini, S. Gozzini, and M. Mazzoni, “Cold rubidium
    molecules formed in a magneto-optical trap,” Phys. Rev. Lett., vol. 84, pp. 2814–2817,
    Mar 2000.
    [24] W. HAPPER, “Optical pumping,” Rev. Mod. Phys., vol. 44, pp. 169–249, Apr 1972.
    [25] W. Jiang, Q.-f. Chen, Y.-s. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically
    induced transparency,” Phys. Rev. A, vol. 73, p. 053804, May 2006.
    [26] J.-X. Chen, Generation of polarization-entangled photons using four-wave mixing in
    cold atoms. Mater’s thesis, National Cheng Kung University, 2011.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE