| 研究生: |
羅盛沐 Lo, Sheng-Mu |
|---|---|
| 論文名稱: |
以區間式遺傳演算法進行堆疊晶QFN構裝體疲勞壽命之區間最佳化設計 Interval Optimization of Fatigue Life for Stacked Die Quad Flat No Lead Package by Interval Genetic Algorithm |
| 指導教授: |
陳榮盛
Chen, Rung-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 反應曲面法 、區間式遺傳演算法 、敏感度 |
| 外文關鍵詞: | response surface method, interval genetic algorithm, sensitivity |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於QFN(Quad Flat No-lead)構裝體的體積小、有良好的電性能與熱性能,且製程的成本與失效率低,近年來逐漸的受到市場上的重視,本文針對堆疊晶QFN構裝體為研究的對象,以產品的設計參數為考量,進行溫度循環的可靠度分析以及設計參數的敏感度分析,以提高構裝體的疲勞壽命與生產品質的穩定。
本文採用ANSYS10.0進行分析並搭配Global/Local分析法,在JEDEC規範下將堆疊晶QFN構裝體施予-40°C~125°C的溫度循環負載,而錫膏選用亞蘭德模型,然後根據Darveaux 所提出之能量法,以分析錫膏的黏塑性應變能密度分佈,並取平均值作為評估整體組件的可靠度的指標。
在進行最佳化之前,以單一因子實驗分析,檢視ANSYS模擬模型的可行性。接著以部分因子設計法篩選顯著性較大的因子,並建立反應曲面迴歸模型。再者,利用反應曲面迴歸模型結合基因演算法進行最佳化分析,其結果顯示可藉由減少晶片面積、印刷電路板厚度與熱脹膨係數,以及增加封膠熱脹膨係數皆可有效地改善堆疊晶QFN構裝體之可靠度。最後,利用區間式遺傳演算法分析,探討各參數對可靠度指標的敏感度,其大小順序為封膠熱膨脹係數>印刷電路板厚度>印刷電路板熱膨脹係數>晶片面積,未來在製程上將盡量提高較敏感參數之精度,以確保產品的品質穩定。
With the characteristics of miniature in size, good electric and thermal performance, low manufacture costs as well as low failure rate, the QFN has been paid attention gradually in the market. The stacked die QFN package is adopted to analyze the effects of the design parameters. Then the reliability analysis under the thermal cycle and the sensitivity analysis on the design parameters are conducted to enhance the fatigue life of the package and the stability of products.
ANSYS10.0 software with the Global/Local method is applied for analysis. Based on the JEDEC code, the stacked die QFN is subjected by a thermal cycle of -40°C~125°C. The viscoplastic property of solder paste is assumed to be Anand’s model. Darveaux’s energy concept is employed to analyze of the strain energy density distribution of the paste solder. Accordingly, an average value is treated as the reliability index for evaluating the package
Prior to the process of the optimal design on reliability of stacked die QFN package, one-factor-at-a-time analysis is conducted to investigate the feasibility of the ANSYS simulation model. Afterwards, the most significant factors are chosen by the fractional factorial design method and a regression model of the response surface is set up in which the genetic algorithm is introduced to obtained the optimal combination of parameters. It shows that the reliability of the QFN package can be effectively improved along with the reduction of the die size, thickness of PCB, CTE of PCB as well as the increase of CTE of mold compound. Finally, the interval genetic algorithm (IGA) is applied to analyze each parameter’s sensitivity to the reliability index. They can be ranked from the largest to the smallest as follows: CTE of mold compound, thickness of PCB, CTE of PCB and die size. It is expected to improve the accuracy of sensitive parameters in the manufacturing process so that the stability of the product quality can be ensured.
Reference
[1]Tee T.Y.;Ng H.S.;Zhong Z. Comprehensive board-level solder joint reliability modeling and testing of QFN and Power QFN packages.
In:Microelectronics Reliability, 2003,Vol.43( 8), pp1329-1338.
[2]Ying M.;Chow S. G.;Emighb R.;Punzalana J. D.; Ramakrishnab K. Design Considerations on Solder Joint Reliability of Dual Row Quad Flat No-lead Packages. In:Proceedings of 6th IEEE Electronics Packaging Technology Conference, 2004, pp308-312.
[3]Yang D. G.;BJansen K. M. E.;Ernst L. J.;Zhang G. Q.;Janssen J. H. J. Experimental and Numerical Investigation on Warpage of QFN Packages.
In:Proceedings of 6th IEEE Electronic Packaging Technology ,2005, pp94-98.
[4]Stoeckl S.;Pape H. Design Study for Improved Solder Joint Reliability of VQFN Packages. In:Proceedings of 6th IEEE Thermal Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-System,2005, pp297-304.
[5]Lim B. K.;Retuta D. V.;Tan H. B. Design and Process Optimization for Dual Row QFN. In:Proceedings of 56th IEEE Electronic Components and Technology Conference, San Diego, CA, 2006, pp1827-1835.
[6]Birzer C.;Stoeckl S.;Schuetz G.;Fink M. Reliability Investigations of Leadless QFN Packages until End-of-Life with Application-Specific Board-Level Stress Tests. In:Proceedings of 56th IEEE Electronic Components and Technology Conference, San Diego, CA,2006
[7]吳金澤 二極體雷射切割QFN封裝之最適化參數研究。
國立台灣科技大學碩士畢業論文,2005
[8]閻慶昌 QFN構裝體錫球接點結構探討。
成功大學工程科學系碩士畢業論文,2006
[9]張家豪 以田口式品質工程分析QFN構裝體疲勞壽命之最佳化探討。
成功大學工程科學系碩士畢業論文,2007
[10]陳彥文 以田口式品質工程分析堆疊晶QFN構裝體疲勞壽命之最佳化探討。成功大學工程科學系碩士畢業論文,2008
[11]方子睿 以反應曲面法搭配基因演算法進行堆疊晶QFN構裝體疲勞壽命之最佳化設計。成功大學工程科學系碩士畢業論文,2009
[12]Darveaux R. Solder Joint Fatigue Life Model.
In:Proceedings of TMS Annual Meeting, Orlando, FL,1997, pp.231-218.
[13]Darveaux R. Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and fatigue life prediction.
In:Journal of Electronic Packaging, 2000,Vol.124(3), pp147-154.
[14]Pang J. H. L.;Seetoh C. W.;Wang Z.P. CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis.
In:Journal of Electronic Packaging ,2000,Vol.122(3), pp255-261.
[15]Bagley J. D. The Behavior of Adaptive Systems Which Employ Genetic and Correlative Algorithms.
In:PhD thesis, University of Michigan, Ann Arbor, 1967.
[16]Holland J. H. Adaptation in Natural and Artificial Systems.
In:University of Michigan Press, 1975.
[17]Hiau T.N. S;Kang C.H.;Liu D.S. Interval optimization of rotor-bearing systems with dynamic behavior constraints using an interval genetic algorithm. In:Structural and Multidisciplinary Optimization, Vol.36(6),2008 ,pp 623-631.
[18]Pang J. H. L.;Che F. X. Thermal Fatigue Reliability Analysis for PBGA with Sn-3.8Ag-0.7Cu Solder Joints. In:Proceedings of 6th IEEE Electronics Packaging Technology Conference ,2004,pp787-792
[19]游晶瑩 大尺度面積型態構裝錫球之可靠度分析。
清華大學動力機械工程系博士論文,2005
[20]林恒正 以二階子模型結合實驗設計法進行多晶片模組可靠度之最佳化分析。成功大學工程科學系博士畢業論文,2002.
[21]謝岳哲 以反應曲面法分析相同尺寸晶片堆疊式封裝之最佳化設計。
成功大學工程科學系碩士畢業論文, 2008
[22]毛昭陽 以最佳等效錫球觀念修正子模型分析法進行疊晶球柵陣列構裝錫球可靠度之最佳化分析。成功大學工程科學系博士畢業論文, 2008。
[23]Temll R.;Beene G.L. 3D Packaging Technology Overview and Mass Memory Applications. In:Aerospace Applications Conference, Aspen, CO, 1996,Vol.2, pp347-355.
[24]Zahn B.A. Finite Element Based Solder Joint Fatigue Life Predictions for a Same Die Stacked Chip Scale Ball Grid Array Package.
In: Proceedings of 27th IEEE Electronics Manufacturing Technology Symposium,2002, pp274-284.
[25]Tee T.Y.;Zhong Z.;Mayhuan L.;Ng H.S.;Baraton X.; Karaton D. Design Analysis of Solder Joint Reliability for Stacked Die Mixed Flip-Chip and Wirebond BGA. In: Proceedings of 4th IEEE Electronics Packaging Technology Conference, 2002, pp391-397.
[26]Pohl J.;Graml M.;Strobel P.;Steiner R.;Pressel K.;Stoeckl S.;Ofner G.;Lee C. Package Optimization of a Stacked Die Flip Chip Based Test Package” In:Proceedings of 6th IEEE Electronics Packaging Technology Conference, 2004, pp590-594.
[27]Mitchell D.;Zahn B.;Carson F. Board Level Thermal Cycle Reliability and Solder Joint Fatigue Life Predictions of Multiple Stacked Die Chip Scale Package Configurations. In:Proceedings of 54th IEEE Electronic Components and Technology Conference, 2004, Vol.1, pp699-703.
[28]Coffin L. F.;Jr. A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal. In:Transactions of ASME, 1954 , Vol.76, pp 931-950.
[29]Manson S. S. Behavior of Materials under Conditions of Thermal Stress. In:Heat Transfer Symposium, University of Michigan Engineering Research Institute, 1953, pp. 9-75.
[30]葉怡成 實驗計劃法—製程與產品最佳化。
五南圖書有限公司,2001.
[31]周鵬程 遺傳演算法原理與應用-活用Matlab
全華圖書股份有限公司,2007