| 研究生: |
施伯錚 Shih, Po-Cheng |
|---|---|
| 論文名稱: |
錫銀銅系無鉛銲錫與Cu/Ni-P/Au基板之界面接合行為 Interfacial Bonding Behavior between Sn-Ag-Cu Series Lead-free Solders and Cu/Ni-P/Au Substrate |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 無鉛銲錫 、剪力強度 、介金屬化合物 、界面反應 |
| 外文關鍵詞: | lead free solder, intermetallic compounds, shear strength, interfacial reaction |
| 相關次數: | 點閱:68 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係探討錫銀銅系無鉛銲錫與Cu/Ni-P/Au基板的界面接合行為,包括錫銀銅系銲錫球與基板間之剪力強度與界面的材料反應。錫銀銅系銲錫球的組成分別是Sn-3.2Ag-0.5Cu以及Sn-3.5Ag-0.5Cu-
0.07Ni-0.01Ge,利用剪力強度試驗機量測銲錫合金與Cu/Ni-P/Au基板間之剪力強度,並經過不同時間之時效熱處理,探討熱處理時間與銲錫組成對剪力強度之影響,並藉由材料間界面反應分析,進一步探討影響界面結合行為之可能因素。
剪力強度試驗分析顯示,在未經時效熱處理條件下,錫銀銅鎳鍺銲錫球的平均剪力強度稍大於錫銀銅銲錫球,顯示微量元素Ni,Ge的添加有助於剪力強度之提升,破斷面皆發生在銲錫球上;當經過不同時間之時效熱處理後,其剪力強度隨著時效熱處理時間之增加而有下降的趨勢,但錫銀銅鎳鍺銲錫球的平均剪力強度約等於錫銀銅銲錫球,顯示微量元素Ni,Ge的添加效應已不復在,破斷面亦發生在銲錫球上,破斷面的表面形態顯示此種破斷特性為延性破斷 ( Ductile fracture )。
由錫銀銅與錫銀銅鎳鍺銲錫與Cu/Ni-P/Au基板界面反應分析得知,在界面有兩種介金屬化合物生成,晶粒較大且呈現角錐狀的是(Cu,Ni)6Sn5介金屬化合物,在(Cu,Ni)6Sn5介金屬化合物周圍的則是鬚晶狀(Ni,Cu)3Sn4介金屬化合物,而在銲錫內則有顆粒細長狀及長板狀之Ag3Sn介金屬化合物生成,經過長時間(1000小時)之時效熱處理後,(Ni,Cu)3Sn4及Ag3Sn介金屬化合物則有晶粒成長的現象,(Cu,Ni)6Sn5化合物晶粒成長現象則不明顯,在銲錫內以及界面間之介金屬化合物其組成無明顯改變,並無觀察到其他介金屬化合物。
Abstract
The interfacial bonding behavior between Sn-Ag-Cu series lead-free solders and Cu/Ni-P/Au substrates were investigated in this work, which includes the shear strength measurement and interfacial reaction. The solder compositions are Sn-3.2Ag-0.5Cu and Sn-3.5Ag-0.5Cu-0.07Ni- 0.01Ge (in wt%). The shear strength was investigated with a shear strength tester and the influences of thermal aging time and the composition of the solder on the shear strength were also studied. Furthermore, the possible factors of affecting interfacial bonding behavior were discussed relating to interfacial reaction.
The shear strength test data revealed that the average value of shear strength of Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge solder is slightly higher than that of Sn-3.2Ag-0.5Cu solder after reflowed. Hence the addition of Ni, Ge can enhance the shear strength of solder ball attachment. On the other hand, as thermal aging time increased, the shear strength was decreased, and the average shear strength in the two solder systems are quite close. Therefore, the influences of the addition of Ni, Ge on shear strength seemed not evident after thermal aging treatment. The ductile fracture surface occurred in the solder after reflow and aging.
The results of interfacial analysis revealed that there are two intermetallic compounds formed at the interface. One is pyramid-shape (Cu, Ni)6Sn5 and the other is (Ni, Cu)3Sn4. Moreover, the Ag3Sn IMC of the particle and plate shapes can be observed in the solder alloy. After long-term thermal aging, (Ni, Cu)3Sn4 and Ag3Sn coarsened but (Cu, Ni)6Sn5 not, meanwhile the composition of IMCs almost kept constant and no other new IMC formed at the interface or in the solder alloy.
1. E.P. Wood and K.L. Nimmo, “In Search of New Lead-Free Electronic Solders,” J. Electronic Materials 23 (8) (1994) 709.
2. S. T. Yang, Y. C. and Y.-H. Kim, “Intermetallic Growth between Sn-Ag-(Cu) Solder and Ni,” Electronic Materials and Packaging, 2001. EMAP 2001. Advances in 11/19/2001 -11/22/2001, Location: Jeju Island , South Korea ,219.
3. S. Jin, “Developing Lead-Free Solders:A Challenge and Opportunity”, JOM, 45 (7), July (1993) 13.
4. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics,” Materials Science and Engineering R, 27 (2000) 95.
5. M. R. Pinnel and W. H. Knausenberger, ”Interconnection System Requirements and Modeling”, AT&T Technology Journal, 66 (4), (1987) 45.
6. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen,”New Pb-Free Solder Alloy with Superior Mechanical Properties,” Applied Physics Letters, 63 (1) (1993) 15.
7. M. McCormack, S. Jin and G.W. Kammlott, “The Design of New Pb-Free Solder Alloys with Improved Properties,” Electronics and the Environment, 1995. ISEE., Proceedings of the 1995 IEEE International Symposium on , 5/1/1995 - 5/3/1995, 171.
8. H. Kabassis, J. W. Rutter and W. C. Winegard , ”Phase Relationships in Bi-In-Sn Alloy Systems,” Material Science Technology 2, (1986) 985.
9. Z. Mei and J. W. Morris Jr.,” Superplastic Creep of Low Melting Point Solder Joints,” J. Electronic Materials 21 (4) (1992) 401.
10. M. McCormack and S. Jin, “Improved Mechanical Properties in New, Pb-Free Solder Alloys,” J. Electronic Materials 23 (8) (1994) 715.
11. C. F. Chan (Motorola), S. K. Lahiri (SMA),P. Yuan (Motorola) and J.B.H. How (Motorola), “An Intermetallic Study of Solder Joints with Sn-Ag-Cu Lead-Free Solder,” Electronics Packaging Technology Conference, 2000. (EPTC 2000). Proceedings of 3rd
12/05/2000 -12/07/2000, Singapore, 72.
12. K. S. Kim, S. H. Huh and K. Suganuma, “Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn-Ag-Cu Alloy and Joints with Cu,” Microelectronics Reliability 43 (2003) 259.
13. S. Y. Jang and K. W. Paik, Soldering Surface Mount Technology, 10, 1998, 29.
14. D.R. Frear, W.B. Jones, and K.R. Kinsman, Solder Mechanics:A State of the Art Assessment, Warrendale, Pa. ,TMS, Pennsylvania, USA, 1991, Chap. 2.
15. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 2, 1986, 1759.
16. D. Grivas, D. Frear, L. Quan and J.W. Morris Jr., “ The Formation of Cu3Sn Intermetallic on the Reaction of Cu with 95Pb-5Sn Solder”, J. Electronic Materials, 15 (6) (1986) 355.
17. W.J. Tomlinson and H.G. Rhodes, J. Materials Science, 22(1987) 1769.
18. Z. Marinkovic and V. Simic, Thin Solid Films, 98(1982) 95.
19. S. Bader, W. Gust, and H. Hieber,” Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu-Sn and Ni-Sn Systems,” Acta Metallurgica Materialia, 43 (1995) 329.
20. D.R. Frear, W.B. Jones, and K.R. Kinsman, Solder Mechanics:A State of the Art Assessment, Warrendale, Pa. ,TMS, Pennsylvania, USA, 1991, Chap. 2-5.
21. T.B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 2, 1986, 965.
22. P. T. Vianco, K. L. Erickson, and P.L. Hopkins, J. Electronic Materials, 23 (1994) 721.
23. Y. S. Wook, W. K. Choi and H. M. Lee, “Calculation of Surface Tension and Wetting Properties of Sn-Based Solder Alloys,” Scripta Materialia, 40 (3) (1999) 297.
24. H. H. Manko, Solder and Soldering, McGraw-Hill, 2nd, NY, USA, (1979) 313.
25. G. Leonida, Handbook of Printed Circuit Design, Manufacture, Components & Assembly, Electrochemical Publications Limited, Ayr, Scotland, 1981, Chap. 5-6.
26. 施嘉玲, 錫鋅銀無鉛銲錫與銅基材之潤濕行為, 國立成功大學材料科學與工程研究所碩士論文, 民國九十一年, p. 15.
27. 陳俊仁, 銦錫銲錫與無電鍍鎳銅磷之潤濕行為和界面反應, 國立成功大學材料科學與工程研究所碩士論文,民國八十五年, p. 14.
28. 劉毅成, 覆晶接合銲錫隆點之重流製程及其性質探討, 國立成功大學材料科學與工程研究所碩士論文,民國八十七年, p. 26.
29. The Merck index :an encyclopedia of chemicals, drugs, and biologicals ,Susan Budavari, 11th ed, Rahway, N.J., 1989.
30. 姚啟文, 95%鉛/5%錫錫膏重流形狀之研究, 國立成功大學材料科學與工程研究所碩士論文,民國八十八年, p. 5.
31. K. S. Kim, S. H. Huh and K. Suganuma, “Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn-Ag-Cu Alloy and Joints with Cu.” Microelectronics Reliability, 43 (2003) 259.
32. C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, “Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni.” J. Electronic Materials, 31 (6) (2002) 584.
33. Zribi A, Clark A, Zavalij L, Borgesen P and Cotts EJ, “The Growth of Intermetallics Compounds at Sn-Ag-Cu Solder/Cu and Sn-Ag-Cu Solder/Ni Interfaces and The Associated Evolution of The Solder Microstructure.” J. Electronic Materials, 30 (2001) 1157.
34. C. J. Chen and K. L. Lin, ” The Reactions between Electroless Ni-Cu-P Deposit and 63Sn-37Pb Flip Chip Solder Bumps during Reflow”, Journal of Electronic Materials 29 (8) (2000) 1007.
35. O. Kubaschewski and C.B. Alcock, Metallurgical ThermoChemistry, 5th Edition, Pergamon, New York, USA, 1979, 300.
36. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 1, 1986, 942.
37. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 1, 1986, 71.
38. V. F. Kiselev and O. V. Krylov, Adsorption and Catalysis on Transition Metals and their Oxides, 1989, Springer-Verlag, Chap.2.
39. 吳榮宗, 工業觸媒概論(增訂版), 民國七十八年,國興出版社, Chap.6.
40. W.-K. Choi and H.-M. Lee, “Prediction of Primary Intermetallic Compound Formation during Interfacial Reaction between Sn-Based Solder and Ni Substrate,” Scripta Materialia, 46 (2002) 777.
41. C.-K. Shin and Y. Huh, “Effect of Cu-Containing Solders on The Critical IMC Thickness for The Shear Strength of BGA Solder Joints,” Electronics Packaging Technology Conference, 2000. (EPTC 2000). Proceedings of 3rd, 12/05/2000 -12/07/2000, Singapore, 406.