簡易檢索 / 詳目顯示

研究生: 王培倫
Wang, Pei-Lun
論文名稱: 二次曲線手性結構應用於共振腔及超常材料
Application of quadratic chiral structure for resonant cavity and metamaterial
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 74
中文關鍵詞: 二次曲線手性結構完全能隙共振腔局部共振型聲子晶體超常材料
外文關鍵詞: Quadratic chiral structure, Full bandgap, Resonant cavity, Locally resonant phononic crystals, Metamaterial
相關次數: 點閱:164下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環境所產生的振動是非常常見的,在講求精密製造中,隔震會變成一個重要的課題。聲子晶體是由兩種不同的彈性材料週期排列而成的結構,此人造結構擁有聲子能隙的特殊現象,可以隔絕聲波或是彈性波在聲子晶體上的傳遞,使特定角度與頻率的彈性波皆無法傳遞通過聲子晶體。
    本文利用二次曲線樑設計出手性結構,並先分析其蒲松比;說明了當此結構在受力變形時,會具有負值的蒲松比;並且討論同樣以二次曲線樑所組成的幾種結構的蒲松比。在動態分析下,利用有限元素法分析二次曲線手性結構的色散曲線,藉由判斷色散曲線來分析彈性波是否能傳遞過聲子晶體。本文亦利用二次曲線手性結構設計出點缺陷聲子晶體及局部共振型聲子晶體,點缺陷亦可作為聲子晶體共振腔。配合超晶胞法計算含點缺陷聲子晶體的色散曲線,並分析在缺陷能帶中彈性波侷限在共振腔之中的模態。在局部共振型二次曲線手性結構中,分析局部共振型所產生的原因,計算負質量密度,並藉由全波模擬說明負質量密度與完全能隙之間的關係。

    We proposed a new design of quadratic chiral structure with ring and without ring by using curve beam. At first, we analyze static mechanical properties, we find it has negative Poisson’s ratio. Quadratic chiral structure with ring has negative Poisson’s ratio near -1. We also analyze dynamic mechanical properties. When we analyze dispersion relation diagram, the quadratic chiral structure is better than square honeycomb because it has appear more full bandgaps. We also design resonant cavity and locally resonant phononic crystals, and calculate the negative mass density.

    中文摘要 I 英文摘要 II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 符號表 XV 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 基本的聲子晶體 2 1-2-2 孔隙材料簡介 4 1-2-3 負蒲松比材料 6 1-2-4 含缺陷聲子晶體 7 1-2-5 局部共振聲子晶體 8 1-2-6 超常材料簡介 8 1-3 本文架構 10 第二章 數值模擬 11 2-1 前言 11 2-2 固態物理學基本定義 11 2-2-1 倒晶格空間 11 2-2-2 布里淵區(Brillouin Zones) 14 2-2-3 布洛赫定理(Bloch Theorem) 16 2-3 有限元素法 17 2-3-1 平面應力及平面應變問題 17 2-3-2 結構模組之有限元素法 19 第三章 二次曲線手性結構之靜態分析 25 3-1 前言 25 3-2 幾何模型建立 25 3-2-1 二次曲線手性結構 25 3-2-2 環形二次曲線手性結構 28 3-3 模擬驗證 29 3-4 二次曲線手性結構(無圓環)之蒲松比分析 31 3-4-1 極值A 與距離L 對蒲松比之影響分析 32 3-4-2 極值A 與x L , y L 之比值對蒲松比之影響分析 33 3-4-3 二次曲樑四邊凹向內之蒲松比分析 34 3-5 環形二次曲線手性結構之蒲松比分析 35 3-5-1 正方蜂巢狀與環形二次曲線手性及反四手手性結構之比較 35 3-5-2 環形二次曲線手性結構改變極值A 對蒲松比影響 37 3-6 小結 38 第四章 二次曲線手性結構之動態分析 39 4-1 前言 39 4-2 完美二次曲線手性結構 40 4-2-1 計算色散曲線 40 4-2-2 極值A 與完全能隙之分析 43 4-2-3 環形二次曲線手性結構與反四手手性結構之色散關係比較 44 4-3 二次曲線手性結構之共振腔 46 4-3-1 含點缺陷二次曲線手性結構 46 4-3-2 另一種配置之含點缺陷二次曲線手性結構 49 4-3-3 含點缺陷二次曲線手性結構共振腔之位移場模擬 52 4-4 局部共振型之環形二次曲線手性結構 53 4-4-1 局部共振型色散曲線計算 54 4-4-2 共振模態分析 57 4-4-3 等效質量密度 60 4-4-4 局部共振型之環形二次曲線手性結構位移場模擬 62 4-4-5 填充物之填充比與完全能隙關係 65 第五章 綜合討論與未來展望 66 5-1 綜合結論 66 5-2 未來展望 67 參考文獻 69

    [1] E. Yablonovitch and T. J. Gmitter, “photonic band structure: The face-centered-cubic
    case” Physical Review Letter, Vol. 63, pp.1950-1953 (1989)
    [2] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and
    electronics” Physical Review Letter, Vol. 58, pp.2059-2062 (1987)
    [3] S. John, “Strong Localization of photons in certain disordered dielectric superlattices”
    Physical Review Letter, Vol. 58, pp.2486-2489 (1987)
    [4] L. Brillouin, Wave propagation in periodic structures, 2nd ed. Dover, New York
    (1953)
    [5] M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, “Acoustic band
    gap structure of periodic elastic composites” Physical Review Letter, Vol. 71, pp.2022
    (1993)
    [6] L. Cremer and H. O. Leilich, “Zur theorie der Biegekettenleiter (On theory of flexural
    periodic systems)” Archiv der Elektrischen Ubertragung, Vol. 7, pp.261 (1953)
    [7] D. J. Mead, “Wave propagation in continuous periodic structures: research
    contributions from Southampton, 1964-1995” Journal of Sound Vibration, Vol. 190,
    No.3, pp. 495-524 (1996)
    [8] S. S. Mester and H. Benaroya, “Periodic and near-periodic structures” Shock and
    Vibration, Vol. 2 No. 1, pp.69-95 (1995)
    [9] R. James, S. M. Woodley, C. M. Dyer and V. F. Humphrey, “Sonic bands, bandgaps,
    and defect states in layered structures- Theory and Experiment” Journal of the
    Acoustical Society of America, Vol. 97, No.4, pp. 2041-2047 (1995)
    [10] G. Wang, D. Yu, J. Wen, Y. Liu and X. Wen, “One-dimensional Phononic crystals with
    locally resonant structures” Physics Letter A, Vol. 327, No. 5-6, pp. 512-521 (2004)
    [11] M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani,
    “Theory of acoustic band structure of periodic elastic composites” Physical Review B,
    Vol.49, pp.2213 (1994)
    [12] M. S. Kushwaha, P. Halevi, “Band-gap engineering in periodic elastic composites”
    Applied Physics Letters, Vol. 64, pp.1805 (1994)
    [13] M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, “Kushwaha et al.
    Reply” Physical Review Letters, Vol.75, pp.3581 (1995)
    [14] L. J. Gibson “Modelling the mechanical behavior of cellular materials” Material
    Science and Engineering, A110, I-36 (1989)
    [15] A. K. Noor, M. S. Anderson, W. H. Greene, “Continuum models for beam- and plate
    like lattice structures” AIAA Journal, 16, 1219-1228 (1978)
    [16] N. J. Hoff, “Structural Problems of Future Aircraft” Third Anglo-American
    Aeronautical Conference. The Royal Aeronautical Society, London, p.77 (1951)
    [17] P. G. Martinsson and A. B. Movchan “Vibrations of lattice structures and phononic
    band gaps” Quarterly Journal of Mechanics and Applied Mathematics, 56(1)
    pp.45-64 (2003)
    [18] M. Ruzzene, F. Scarpa and F. Soranna “Wave beaming effects in two-dimensional
    cellular structures” Smart Material Structure, 12, 363-372 (2003)
    [19] A. S. Phani, J. Woodhouse, and N. A. Fleck, “Wave propagation in two-dimensional
    periodic lattices” Journal Acoustic Society of America, 119, pp.1995-2005 (2006)
    [20] S. Gonella and M. Ruzzene. “Analysis of in-plane wave propagation in hexagonal and
    re-entrant lattice” Journal of Sound and Vibration, 312, pp.125-139 (2008)
    [21] D. Prall and R. S. Lakes, “Properties of a chiral honeycomb with a Poisson’s ratio -1”
    International Journal of Mechanical Sciences, 39, 305-314 (1997)
    [22] A. Alderson, K. L. Alderson, D. Attard, K. E. Evans, R. Gatt, J. N. Grima, W. Miller,
    N.Ravirala, C. W. Smith, and K. Zied , “Elastic constants of 3-, 4- and 6-conneced
    chiral and anti-chiral honeycombs subject to uniaxial in-plane loading.” Composites
    Science and Technology, 70, 1034-1041 (2010)
    [23] Y. J. Chen, F. Scarpa, Y. J. Liu, and J. S. Leng, “Elasticity of anti-tetrachiral
    anisotropic lattices” International Journal of Solids and Structures, 50, 996-1004
    (2013)
    [24] A. Spadoni, M. Ruzzene, S. Gonella, and F. Scarpa, “Phononic properties of
    hexagonal chiral lattices” Wave Motion, 46, pp.435-450 (2009)
    [25] A. Spadoni, M. Ruzzene, “Elasto-static micropolar behavior of a chiral auxetic
    lattice” Journal of Mechanics and Physics of Solids, 60, 156-171 (2012)
    [26] Y. Liebold-Ribeiro, and C. Körner, “Phononic band gaps in periodic cellular
    materials” Advanced Engineering Materials, 16, 328-334 (2014)
    [27] X. N. Liu, G. L. Huang, and G. K. Hu, “Chiral effect in plane isotropic micropolar
    elasticity and its application to chiral lattices” Journal of Mechanics and Physics of
    Solids, 60, 1907-1921
    [28] X. N. Liu, G. K. Hu, C. T. Sun and G. L. Huang, “Wave propagation characterization
    and design of two-dimensional elastic chiral metacomposite” Journal of Sound and
    Vibration, 330, pp.2536-2553 (2011)
    [29] A. Bacigalupo, and L. Gambarotta, “Simplified modeling of chiral lattice materials
    with local resonators” International Journal of Solids and Structures, 83, 126–141
    (2016)
    [30] D. Zhu, X. Huang, H. Hua, and H. Zheng, “Vibration isolation characteristics of finite
    periodic tetra-chiral lattice coating filled with internal resonators” Journal of
    Mechanical Engineering Science, 0, 1-11 (2015)
    [31] Y. C. Fung, Foundations of solid mechanics. Prentice-Hall, New Jersey (1965)
    [32] A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th edition,
    Cambridge University Press, Cambridge
    [33] G. Simmons, H. Wang, “Single crystal elastic constants and calculated aggregate
    properties: ahandbook” MIT Press, Massachusetts
    [34] F. Milstein, K. Huang, “Existence of a negative Poisson ratio in fcc crystals” Physical
    Review B, 19, 2030-2033 (1979)
    [35] L. J. Gibson, M. F. Ashby, G. S. Schajer, C. I. Roberson, “The mechanics of
    two-dimensional cellular materials” Proceedings of Royal Society of London A, 382,
    25-42 (1982)
    [36] R. F. Almgren, “An isotropic three-dimensional structure with Poisson’s ratio = -1”
    Journal of Elasticity, 15, 427-430
    [37] Y. Sun and N. M. Pugno, “In plane stiffness of multifunctional hierarchical
    honeycombs with negative Poisson’s ratio sub-structures” Composite Structures, 106,
    681-689 (2013)
    [38] M. Ruzzene and F. Scarpa, “Control of Wave Propagation in sandwich beams with
    Auxetic Core” Journal of Intelligent Material Systems and Structures, 12, 363 (2003)
    [39] F. Scarpa and P. G. Malischewsky, “Some new considerations concerning the
    Rayleigh-wave velocity in auxetic materials” Physica Status Solidi B, 245, 578 (2008)
    [40] P. G. Malischewsky, A. Lorato, F. Scarpa, and M. Ruzzene, “Unusual behavior of
    wave propagation in auxetic structures: P-waves on free surface and S-waves in chiral
    lattices with piezoelectrics” Physica Status Solidi B, 249, 1339 (2012)
    [41] T. C. Lim, P. Cheang, and F. Scarpa, “Wave motion in auxetic solids” Physica Status
    Solidi B, 251, No. 2, 388-396 (2014)
    [42] K. E. Evans, “:Auxetic polymers: a new range of materials:” Endeavour, 15, 170-174
    [43] R. Lakes, “Advances in negative Poisson’s ratio materials” Advanced Material, 5,
    293-296 (1993)
    [44] Y. Liu, H. Hu, “A review on auxetic structures and polymeric materials” Scientific
    Research and Essays, 5, 1052-1063
    [45] T. C. Lim, Auxetic Materials and structures, 1st edition, (2015)
    [46] M. M. Sigalas, “Elastic wave band gaps and defect states in two-dimensional
    composites” Journal of Acoustical Society of America, Vol. 101 No. 3, pp. 1256–1261
    (1997)
    [47] F. Wu, Z. Hou, Z. Liu, and Y. Liu, “Point defect states in two-dimensional phononic
    crystals” Physical Letter A, Vol. 292 No.3, pp.198-202 (2001)
    [48] Y. J. Cao and Y. Z. Li, “Symmetry and coupling efficiency of the defect modes in
    two-dimensional phononic crystals” Modern Physics Letter B, Vol. 21 No. 22,
    pp.1479-1488 (2007)
    [49] J. Chen, J. C. Cheng, and B. Li “Dynamics of elastic waves in two-dimensional
    phononic crystals with chaotic defect” Applied Physics Letter, Vol. 91 No.12, 121902
    (2007)
    [50] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan and P. Sheng ”Locally
    Resonant Sonic Materials” Science, Vol. 289, 1734 (2000)
    [51] Z. Liu, C. T. Chan and P. Sheng, “Three-component elastic wave band-gap material”
    Physical Review B, Vol. 65, 165116 (2002)
    [52] G. Wang, L. H. Shao, Y. Z. Liu, and J. H. Wen “Accurate evaluation of lowest band
    gaps in ternary locally resonant phononic crystals” Chinese Physics, 15, 1843 (2006)
    [53] X. Zhang, Y. Liu, F. Wu, and Z. Liu, “Large two-dimensional band gaps in
    three-component phononic crystals” Physics Letters A, Vol. 317, No. 2, pp.144-149
    (2003)
    [54] S. Zhang and J. Cheng, “Existence of broad acoustic band gaps in three-component
    composite” Physical Review B, Vol. 68, No.24, 245101 (2003)
    [55] H. Larabi, Y. Pennec, B. Djafari-Rouhani, and J. O. Vasseur, “Multicoaxial cylindrical
    inclusions in locally resonant phononic crystals” Physical Review E, Vol. 75, No.6,
    066601 (2007)
    [56] Y. Wu, Y. Lai, Z. Q. Zhang, “Elastic Metamaterials with Simultaneously Negative
    Effective Shear Modulus and Mass Density” Physical Review Letters, 107, 105506
    (2011)
    [57] L. Fok, X. Zhang, “Negative acoustic index metamaterial” Physical Review B, 83,
    214304 (2011)
    [58] V. G. Veselago, ”The electrodynamics of substances with simultaneously negative
    values of ε and μ” Soviet Physics Uspekhi, Vol. 10, pp.509 (1968)
    [59] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz,
    “Composite medium with simultaneously negative permeability and permittivity”
    Physical Review Letters, Vol. 84, pp.4184 (2000)
    [60] J. B. Pendry, “Negative refraction makes a perfect lens” Physical Review Letters, Vol.
    85, pp.3966 (2000)
    [61] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals:
    Refraction-like behavior in the vicinity of the photonic band gap” Physical Review B,
    Vol. 62, pp.10696 (2000)
    [62] R. S. Lakes, T. Lee, A. Bersie, and Y. C. Wang, “Extreme damping in composite
    materials with negative-stiffness inclusions” Nature, 410, 565 (2001)
    [63] N. Fang, D. J. Xi, J. Y. Xu, M. Ambati, W. Srituravanish, C. Sun and X. Zhang,
    “Ultrasonic metamaterials with negative modulus” Nature Materials, 5, 452-454
    (2007)
    [64] J. Li and C. T. Sun, “Double-negative acoustic metamaterial” Physical Review E,
    70, 055602 (2004)
    [65] X. Zhou, and G. Hu, “Analytic model of elastic metamaterials with local resonances”
    Physical Review B, 79, 195109 (2009)
    [66] Y. Wu, L. Yun, and Z. Q. Zhang, “Effective medium theory for elastic
    metamaterials in two-dimensions” Physical Review B, 76, 205313 (2007)
    [67] A.Modinos, V. Yannopapas, and N. Stefanou, “Scattering of electromagnetic waves by nearly periodic structures” Physical Review B, 61, 8099 (2007)
    [68] D. Bigoni, S. Guenneau, A. B. Movchan, and M. Brun, ”Elastic metamaterials with
    inertial locally resonant structures: Application to lensing and localization” Physical
    Review B, 87, 174303 (2013)
    [69] K. F. Graff, ”Wave motion in elastic solids” Dover Publications. New York (1975)
    [70] J. N. Reddy, An introduction to the finite element method 3rd edition, McGraw-Hill,
    New York (2006)
    [71] J. G. Berryman, “Long-wavelength propagation in composite elastic media I.
    Spherical inclusions” Journal of the Acoustic Society of America, 68, 1809-1814
    (1980)
    [72] J. Mei, Z. Liu, W. Wen and P. Sheng, “Effective dynamic mass density of composites”
    Physical Review B, 76, 134205 (2007)
    [73] G. W. Milton and J. R. Willis, “On modifications of Newton’s second law and linear
    continuum elastodynamics” Proceedings of the Royal Society A, 463, 855-880 (2007)

    下載圖示 校內:2019-08-10公開
    校外:2019-08-10公開
    QR CODE