| 研究生: |
王培倫 Wang, Pei-Lun |
|---|---|
| 論文名稱: |
二次曲線手性結構應用於共振腔及超常材料 Application of quadratic chiral structure for resonant cavity and metamaterial |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 二次曲線手性結構 、完全能隙 、共振腔 、局部共振型聲子晶體 、超常材料 |
| 外文關鍵詞: | Quadratic chiral structure, Full bandgap, Resonant cavity, Locally resonant phononic crystals, Metamaterial |
| 相關次數: | 點閱:164 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環境所產生的振動是非常常見的,在講求精密製造中,隔震會變成一個重要的課題。聲子晶體是由兩種不同的彈性材料週期排列而成的結構,此人造結構擁有聲子能隙的特殊現象,可以隔絕聲波或是彈性波在聲子晶體上的傳遞,使特定角度與頻率的彈性波皆無法傳遞通過聲子晶體。
本文利用二次曲線樑設計出手性結構,並先分析其蒲松比;說明了當此結構在受力變形時,會具有負值的蒲松比;並且討論同樣以二次曲線樑所組成的幾種結構的蒲松比。在動態分析下,利用有限元素法分析二次曲線手性結構的色散曲線,藉由判斷色散曲線來分析彈性波是否能傳遞過聲子晶體。本文亦利用二次曲線手性結構設計出點缺陷聲子晶體及局部共振型聲子晶體,點缺陷亦可作為聲子晶體共振腔。配合超晶胞法計算含點缺陷聲子晶體的色散曲線,並分析在缺陷能帶中彈性波侷限在共振腔之中的模態。在局部共振型二次曲線手性結構中,分析局部共振型所產生的原因,計算負質量密度,並藉由全波模擬說明負質量密度與完全能隙之間的關係。
We proposed a new design of quadratic chiral structure with ring and without ring by using curve beam. At first, we analyze static mechanical properties, we find it has negative Poisson’s ratio. Quadratic chiral structure with ring has negative Poisson’s ratio near -1. We also analyze dynamic mechanical properties. When we analyze dispersion relation diagram, the quadratic chiral structure is better than square honeycomb because it has appear more full bandgaps. We also design resonant cavity and locally resonant phononic crystals, and calculate the negative mass density.
[1] E. Yablonovitch and T. J. Gmitter, “photonic band structure: The face-centered-cubic
case” Physical Review Letter, Vol. 63, pp.1950-1953 (1989)
[2] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and
electronics” Physical Review Letter, Vol. 58, pp.2059-2062 (1987)
[3] S. John, “Strong Localization of photons in certain disordered dielectric superlattices”
Physical Review Letter, Vol. 58, pp.2486-2489 (1987)
[4] L. Brillouin, Wave propagation in periodic structures, 2nd ed. Dover, New York
(1953)
[5] M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, “Acoustic band
gap structure of periodic elastic composites” Physical Review Letter, Vol. 71, pp.2022
(1993)
[6] L. Cremer and H. O. Leilich, “Zur theorie der Biegekettenleiter (On theory of flexural
periodic systems)” Archiv der Elektrischen Ubertragung, Vol. 7, pp.261 (1953)
[7] D. J. Mead, “Wave propagation in continuous periodic structures: research
contributions from Southampton, 1964-1995” Journal of Sound Vibration, Vol. 190,
No.3, pp. 495-524 (1996)
[8] S. S. Mester and H. Benaroya, “Periodic and near-periodic structures” Shock and
Vibration, Vol. 2 No. 1, pp.69-95 (1995)
[9] R. James, S. M. Woodley, C. M. Dyer and V. F. Humphrey, “Sonic bands, bandgaps,
and defect states in layered structures- Theory and Experiment” Journal of the
Acoustical Society of America, Vol. 97, No.4, pp. 2041-2047 (1995)
[10] G. Wang, D. Yu, J. Wen, Y. Liu and X. Wen, “One-dimensional Phononic crystals with
locally resonant structures” Physics Letter A, Vol. 327, No. 5-6, pp. 512-521 (2004)
[11] M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani,
“Theory of acoustic band structure of periodic elastic composites” Physical Review B,
Vol.49, pp.2213 (1994)
[12] M. S. Kushwaha, P. Halevi, “Band-gap engineering in periodic elastic composites”
Applied Physics Letters, Vol. 64, pp.1805 (1994)
[13] M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, “Kushwaha et al.
Reply” Physical Review Letters, Vol.75, pp.3581 (1995)
[14] L. J. Gibson “Modelling the mechanical behavior of cellular materials” Material
Science and Engineering, A110, I-36 (1989)
[15] A. K. Noor, M. S. Anderson, W. H. Greene, “Continuum models for beam- and plate
like lattice structures” AIAA Journal, 16, 1219-1228 (1978)
[16] N. J. Hoff, “Structural Problems of Future Aircraft” Third Anglo-American
Aeronautical Conference. The Royal Aeronautical Society, London, p.77 (1951)
[17] P. G. Martinsson and A. B. Movchan “Vibrations of lattice structures and phononic
band gaps” Quarterly Journal of Mechanics and Applied Mathematics, 56(1)
pp.45-64 (2003)
[18] M. Ruzzene, F. Scarpa and F. Soranna “Wave beaming effects in two-dimensional
cellular structures” Smart Material Structure, 12, 363-372 (2003)
[19] A. S. Phani, J. Woodhouse, and N. A. Fleck, “Wave propagation in two-dimensional
periodic lattices” Journal Acoustic Society of America, 119, pp.1995-2005 (2006)
[20] S. Gonella and M. Ruzzene. “Analysis of in-plane wave propagation in hexagonal and
re-entrant lattice” Journal of Sound and Vibration, 312, pp.125-139 (2008)
[21] D. Prall and R. S. Lakes, “Properties of a chiral honeycomb with a Poisson’s ratio -1”
International Journal of Mechanical Sciences, 39, 305-314 (1997)
[22] A. Alderson, K. L. Alderson, D. Attard, K. E. Evans, R. Gatt, J. N. Grima, W. Miller,
N.Ravirala, C. W. Smith, and K. Zied , “Elastic constants of 3-, 4- and 6-conneced
chiral and anti-chiral honeycombs subject to uniaxial in-plane loading.” Composites
Science and Technology, 70, 1034-1041 (2010)
[23] Y. J. Chen, F. Scarpa, Y. J. Liu, and J. S. Leng, “Elasticity of anti-tetrachiral
anisotropic lattices” International Journal of Solids and Structures, 50, 996-1004
(2013)
[24] A. Spadoni, M. Ruzzene, S. Gonella, and F. Scarpa, “Phononic properties of
hexagonal chiral lattices” Wave Motion, 46, pp.435-450 (2009)
[25] A. Spadoni, M. Ruzzene, “Elasto-static micropolar behavior of a chiral auxetic
lattice” Journal of Mechanics and Physics of Solids, 60, 156-171 (2012)
[26] Y. Liebold-Ribeiro, and C. Körner, “Phononic band gaps in periodic cellular
materials” Advanced Engineering Materials, 16, 328-334 (2014)
[27] X. N. Liu, G. L. Huang, and G. K. Hu, “Chiral effect in plane isotropic micropolar
elasticity and its application to chiral lattices” Journal of Mechanics and Physics of
Solids, 60, 1907-1921
[28] X. N. Liu, G. K. Hu, C. T. Sun and G. L. Huang, “Wave propagation characterization
and design of two-dimensional elastic chiral metacomposite” Journal of Sound and
Vibration, 330, pp.2536-2553 (2011)
[29] A. Bacigalupo, and L. Gambarotta, “Simplified modeling of chiral lattice materials
with local resonators” International Journal of Solids and Structures, 83, 126–141
(2016)
[30] D. Zhu, X. Huang, H. Hua, and H. Zheng, “Vibration isolation characteristics of finite
periodic tetra-chiral lattice coating filled with internal resonators” Journal of
Mechanical Engineering Science, 0, 1-11 (2015)
[31] Y. C. Fung, Foundations of solid mechanics. Prentice-Hall, New Jersey (1965)
[32] A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th edition,
Cambridge University Press, Cambridge
[33] G. Simmons, H. Wang, “Single crystal elastic constants and calculated aggregate
properties: ahandbook” MIT Press, Massachusetts
[34] F. Milstein, K. Huang, “Existence of a negative Poisson ratio in fcc crystals” Physical
Review B, 19, 2030-2033 (1979)
[35] L. J. Gibson, M. F. Ashby, G. S. Schajer, C. I. Roberson, “The mechanics of
two-dimensional cellular materials” Proceedings of Royal Society of London A, 382,
25-42 (1982)
[36] R. F. Almgren, “An isotropic three-dimensional structure with Poisson’s ratio = -1”
Journal of Elasticity, 15, 427-430
[37] Y. Sun and N. M. Pugno, “In plane stiffness of multifunctional hierarchical
honeycombs with negative Poisson’s ratio sub-structures” Composite Structures, 106,
681-689 (2013)
[38] M. Ruzzene and F. Scarpa, “Control of Wave Propagation in sandwich beams with
Auxetic Core” Journal of Intelligent Material Systems and Structures, 12, 363 (2003)
[39] F. Scarpa and P. G. Malischewsky, “Some new considerations concerning the
Rayleigh-wave velocity in auxetic materials” Physica Status Solidi B, 245, 578 (2008)
[40] P. G. Malischewsky, A. Lorato, F. Scarpa, and M. Ruzzene, “Unusual behavior of
wave propagation in auxetic structures: P-waves on free surface and S-waves in chiral
lattices with piezoelectrics” Physica Status Solidi B, 249, 1339 (2012)
[41] T. C. Lim, P. Cheang, and F. Scarpa, “Wave motion in auxetic solids” Physica Status
Solidi B, 251, No. 2, 388-396 (2014)
[42] K. E. Evans, “:Auxetic polymers: a new range of materials:” Endeavour, 15, 170-174
[43] R. Lakes, “Advances in negative Poisson’s ratio materials” Advanced Material, 5,
293-296 (1993)
[44] Y. Liu, H. Hu, “A review on auxetic structures and polymeric materials” Scientific
Research and Essays, 5, 1052-1063
[45] T. C. Lim, Auxetic Materials and structures, 1st edition, (2015)
[46] M. M. Sigalas, “Elastic wave band gaps and defect states in two-dimensional
composites” Journal of Acoustical Society of America, Vol. 101 No. 3, pp. 1256–1261
(1997)
[47] F. Wu, Z. Hou, Z. Liu, and Y. Liu, “Point defect states in two-dimensional phononic
crystals” Physical Letter A, Vol. 292 No.3, pp.198-202 (2001)
[48] Y. J. Cao and Y. Z. Li, “Symmetry and coupling efficiency of the defect modes in
two-dimensional phononic crystals” Modern Physics Letter B, Vol. 21 No. 22,
pp.1479-1488 (2007)
[49] J. Chen, J. C. Cheng, and B. Li “Dynamics of elastic waves in two-dimensional
phononic crystals with chaotic defect” Applied Physics Letter, Vol. 91 No.12, 121902
(2007)
[50] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan and P. Sheng ”Locally
Resonant Sonic Materials” Science, Vol. 289, 1734 (2000)
[51] Z. Liu, C. T. Chan and P. Sheng, “Three-component elastic wave band-gap material”
Physical Review B, Vol. 65, 165116 (2002)
[52] G. Wang, L. H. Shao, Y. Z. Liu, and J. H. Wen “Accurate evaluation of lowest band
gaps in ternary locally resonant phononic crystals” Chinese Physics, 15, 1843 (2006)
[53] X. Zhang, Y. Liu, F. Wu, and Z. Liu, “Large two-dimensional band gaps in
three-component phononic crystals” Physics Letters A, Vol. 317, No. 2, pp.144-149
(2003)
[54] S. Zhang and J. Cheng, “Existence of broad acoustic band gaps in three-component
composite” Physical Review B, Vol. 68, No.24, 245101 (2003)
[55] H. Larabi, Y. Pennec, B. Djafari-Rouhani, and J. O. Vasseur, “Multicoaxial cylindrical
inclusions in locally resonant phononic crystals” Physical Review E, Vol. 75, No.6,
066601 (2007)
[56] Y. Wu, Y. Lai, Z. Q. Zhang, “Elastic Metamaterials with Simultaneously Negative
Effective Shear Modulus and Mass Density” Physical Review Letters, 107, 105506
(2011)
[57] L. Fok, X. Zhang, “Negative acoustic index metamaterial” Physical Review B, 83,
214304 (2011)
[58] V. G. Veselago, ”The electrodynamics of substances with simultaneously negative
values of ε and μ” Soviet Physics Uspekhi, Vol. 10, pp.509 (1968)
[59] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz,
“Composite medium with simultaneously negative permeability and permittivity”
Physical Review Letters, Vol. 84, pp.4184 (2000)
[60] J. B. Pendry, “Negative refraction makes a perfect lens” Physical Review Letters, Vol.
85, pp.3966 (2000)
[61] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals:
Refraction-like behavior in the vicinity of the photonic band gap” Physical Review B,
Vol. 62, pp.10696 (2000)
[62] R. S. Lakes, T. Lee, A. Bersie, and Y. C. Wang, “Extreme damping in composite
materials with negative-stiffness inclusions” Nature, 410, 565 (2001)
[63] N. Fang, D. J. Xi, J. Y. Xu, M. Ambati, W. Srituravanish, C. Sun and X. Zhang,
“Ultrasonic metamaterials with negative modulus” Nature Materials, 5, 452-454
(2007)
[64] J. Li and C. T. Sun, “Double-negative acoustic metamaterial” Physical Review E,
70, 055602 (2004)
[65] X. Zhou, and G. Hu, “Analytic model of elastic metamaterials with local resonances”
Physical Review B, 79, 195109 (2009)
[66] Y. Wu, L. Yun, and Z. Q. Zhang, “Effective medium theory for elastic
metamaterials in two-dimensions” Physical Review B, 76, 205313 (2007)
[67] A.Modinos, V. Yannopapas, and N. Stefanou, “Scattering of electromagnetic waves by nearly periodic structures” Physical Review B, 61, 8099 (2007)
[68] D. Bigoni, S. Guenneau, A. B. Movchan, and M. Brun, ”Elastic metamaterials with
inertial locally resonant structures: Application to lensing and localization” Physical
Review B, 87, 174303 (2013)
[69] K. F. Graff, ”Wave motion in elastic solids” Dover Publications. New York (1975)
[70] J. N. Reddy, An introduction to the finite element method 3rd edition, McGraw-Hill,
New York (2006)
[71] J. G. Berryman, “Long-wavelength propagation in composite elastic media I.
Spherical inclusions” Journal of the Acoustic Society of America, 68, 1809-1814
(1980)
[72] J. Mei, Z. Liu, W. Wen and P. Sheng, “Effective dynamic mass density of composites”
Physical Review B, 76, 134205 (2007)
[73] G. W. Milton and J. R. Willis, “On modifications of Newton’s second law and linear
continuum elastodynamics” Proceedings of the Royal Society A, 463, 855-880 (2007)