| 研究生: |
羅基哲 Luo, Ji-Zhe |
|---|---|
| 論文名稱: |
應用Data Mining技術於連鎖加盟業顧客關係管理—以租書業為例 Application of Data Mining to Customer Relationship Management of Franchise Chain - Using the Book-Rental Operations as Example |
| 指導教授: |
邱正仁
Chiou, Jeng-ren 徐立群 Shu, LihChyun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 會計學系 Department of Accountancy |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 客戶關係管理 、連鎖加盟業 |
| 外文關鍵詞: | franchise chain, customer relationship management |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統連鎖加盟業多著重於加盟規模的擴張,而未於連鎖加盟產業的核心,即顧客關係管理上付出相同的努力。導致業務量到達一定規模後便無以為繼。而顧客關係管理的核心便是要掌握顧客的需求,甚而創造需求。而要了解顧客的習性,現今最有效率的方式便是透過一個良善完整的資料庫,進而透過資料探勘方式來發掘顧客的特徵。本研究以連鎖加盟產業為研究對象,並以台灣少數具備線上系統之連鎖租書業,作為分析之個案。
顧客為何會產生流失,及顧客流失前是否有相同的特徵,皆是連鎖加盟業所關注的議題。本研究試圖以資料探勘方式找出顧客流失的相同特徵,並比較使用於個案公司之資料探勘技術。而研究亦顯示決策樹分析應用於流失預測具有較高之正確率,可作為未來個案公司實際執行顧客流失分析之參考。此外本研究亦針對個案公司之資料庫,進行顧客價值之分析,期望未來能有效應用於顧客價值之區隔,以幫助行銷人員更精準的執行相關行銷活動。
應用資料探勘進行分析的成敗關鍵因素之一,為資料來源的質與量,此關係到整體資料庫行銷設計方案的完善與否。本研究亦提出顧客資料庫行銷的設計方案、資料收集的管理面建議、可採用之個別化顧客接觸的工具、資料庫行銷時與顧客接觸的關係循環中顧客的行為及衡量的指標、以及資料庫行銷的測試標準等,可供連鎖加盟業執行參考的指標。
Traditional Franchise Chains pay more attention on the scale expansion of chain stores instead of focusing on the core of Franchise Chain which is customer relationship management (CRM). This leads to the result that when the firm size comes to a certain extent, it cannot get further improved. The axis of CRM is to have customers’ need in hand. Even more, their needs could be initiated. The most efficient way, nowadays, to find out the character of customers is through the accurate and flawless data base. Based on data mining, customers’ specialty could be found. The subject of this study is Franchise Chain. The rent bookstore with on-line systems which are rarely equipped with in Taiwan is the case analysis in this study.
The owners of Franchise Chains are concerned that the reasons why the customers flow away as well as whether there are same patterns before and after customer loss. This study attempts to seek out the same patterns of customer loss though data mining and to compare the data mining techniques used in the company. The result shows that there is higher validity to apply decision tree to estimate the customer loss, which can be used as a reference when it comes to analyzing the customers’ loss in the future. Furthermore, this study is aimed at analyzing the customers’ value based on the data base of the company as well. It is expected that the distinction of customers’ value can be put in use effectively in the days to come in order to help sellers to carry out selling tasks more precisely.
One of the factors of success or failure of the analysis which based on applying data mining is the quality and the quantity of the data source. It relates to the perfection of the entire database of marketing plans. This study also presents plans of customer database marketing, the suggestions of data-collecting management, adaptable individualized tools of customer contact, the index of customer behavior and measurement in the circulation of database marketing and customer contact, and the test standards of database marketing. These can be index for reference to Franchise Chains.
中文部份
ARC 遠擎管理顧問公司(2001)。顧客關係管理深度解析。臺北:遠擎管理顧問股份有限公司。
任立中和王仕茹(2000)。創造、挖掘消費者的潛在需求,遠見雜誌 168 期。
林慧晶(1997),資料庫行銷之客戶價值分析與行銷策略應用,國立臺灣大學國際企業學系研究所碩士論文。
邱義堂(2001)。通信資料庫之資料探勘:客戶流失預測之研究。國立中山大學
資訊管理學系研究所碩士論文。
張月鳳(2001)。策略性資料庫行銷應用於信用卡市場之實證研究,國立台灣大學企管碩士論文。
黃俊英(1996)。多變量分析,中國經濟企業研究所,華泰文化事業公司。
葉怡成(1992)。類神經網路模式應用與實作。臺北:儒林書局。
蔡東機(1999)。300 倍奇蹟:如何結合連鎖業與網路創造商機(初版)。台北市:方智。
雷漢聲、姚姿如、洪巧娟、周紀汶、張貽茜、陳雪芳、林雅娟(2001)。十大書坊競爭策略解析-策略矩陣之應用。在教育部;雲林科技大學企管系主辦,第四屆全國經營實務專題成果發表研討會,雲林縣。
英文部份
Berry, M., J. and G. S. Linoff. 2004. Data mining techniques: for marketing, sales, and customer support. New York: Wiley Computer.
Bose, S. 1996. Classification using splines. Computational Statistics & Data Analysis 22: 505-525.
Brondmo, H. P. 2002. The Engaged Customer: The New Rules of Internet Direct Marketing, Harpercollins.
Browne, M., J. and R. E. Hoyt. 1995. Economic and market predictors of insolvencies in the property- liability insurance industry. Journal of Risk and Insurance, 62, 309-327.
Chang, W., L. and S. T. Yuan. 1999. Data mining and customer retention/profitability. Paper presented at the meeting of the National Computer Symposium Conference, Taipei, Taiwan.
Dahya, J., Lonie, A. A., and D. M. Power. 1998. Ownership structure, firm performance and top executive change: an analysis of UK firms. Journal of Business Finance & Accounting, 25, 1089-1118.
Efron, B. 1975. The efficiency of logistic regression compared to normal discriminant function analysis. Journal of the American Statistical Association, 70, 892-898.
Fish, K. E., Barnes, J. H., and M. W. Aiken. 1995. Artificial neural networks: a new methodology for industrial market segmentation. Industrial Marketing Management, 24, 431-438.
Freeman, J. A., and D. M. Skapura. 1992. Neural networks algorithms, applications, and programming techniques. MA: Addison-Wesley Publishing Company.
Griffin, W. L., Fisher, N. I., Friedman, J. H., and C. G. Ryan. 1997. Statistical techniques for the classification of chromites in diamond exploration samples. Journal of Geochemical Exploration, 59, 233-249.
Hastie, T., Friedman, J., and R. Tibshirani. 2001. The element of statistical learning. Springer-Verlag, New York.
Hellier, P. K., Geursen, G. M., Carr, R. A. and J. A. Rickard. 2003. Customer Repurchase Intention: A General Structural Equation Model. Europen Journal of Marketing,37(11/12),1762-1800.
Hosmer, D. W., and S. Lemeshow. 1989. Applied logistic regression. New York: John Wiley & Sons.
Hughes, A. M. 1994. Strategic Database Marketing, Chicago:Probus Publishing.
Hughes, A. M. 2001. Strategic database marketing- the masterplan for starting and managing a profitable, customer-based marketing program. New York: McGraw-Hill.
Hwang, D. Y., Lee, C. F., and K. T. Liaw. 1997. Forecasting bank failures and deposit insurance premium. International Review of Economics and Finance, 6(3), 317-334.
Jain, A. K., Mao, J., and K. Mohiuddin. 1996. Artificial neural network: A tutorial. IEEE computer, 29, 31-44.
Kalakota, R. and M. Robinson 1999. E-Business: Roadmap for Success, 1st ed.,U.S.A.: Mary T. O’Brien.
Kamakura, W. A. and G. J. Russell 1989. “A Probabilistic Choice Model for Market Segmentation and Elasticity Structure,” Journal of Marketing Research, Vol. 26, 1989, pp379~390.
Koch, R. 1997. The 80/20 principle: the secret of achieving more with less. London: Nicholas Brealey.
Lee, H., Jo, H., and Han, I. 1997. Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis. Expert Systems With Applications, 13, 97-108.
Little, John D.C. 1979. Decision Support System For Marketing Managers, Direct Marketing, Vol 157, Nov 1994, pp36~37.
Newell, F. 2000. Loyalty.com: customer relationship management in the new era of internet marketing. New York: McGraw-Hill.
Odum, E. P. 1971. Fundamental of ecology. Phidadelphia: W.B. Saunders Co.
Rumelhart, D. E., Hinton D. E., and R. J. Williams. 1986. Learning internal representations by error propagation in parallel distributed processing. MIT Press, 1, 318-362.
Stone, B. 1995. Successful Direct Marketing Methods, pp37-59, Lincolnwood, IL:NTC Business Books.
Shani, D. and S. Chalasani. 1992. Exploiting Niches Using Relationship Marketing, The Journal of Consumer Marketing, Vol 9, Summer 1992.
Spangler, W. E., May, J. H., and L. G. Vargas. 1999. Choosing data-mining methods for multiple classification:representational and performance measurement implications for decision support. Journal of Management Information Systems.
Sung, T. K., Chang, N., and G. Lee. 1999. Dynamics of modeling in data mining: interpretive approach to bankruptcy prediction. Journal of Management Information Systems, 16, 63-85.
Vellido, A., Lisboa, P. J. G., and J. Vaughan. 1999. Neural networks in business: a survey of applications (1992-1998). Expert Systems With Applications, 17, 51-70.
Werbos, P. J. 1974. Beyond regression: new tools for prediction and analysis in the behavioral sciences. Unpublished doctoral dissertation, Harvard University, MA.
Yuan, S. T., and W. L., Chang. 2001. Mixed- initiative synthesized learning approach for web-based CRM. International Journal of Expert Systems with Applications, 20(2), 187-200.
Zhang, G., Patuwo, B. E., and Hu, M. Y. 1998. Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting, 14, 35-62.
校內:2057-10-09公開