| 研究生: |
張瑞麟 Chang, Jui-Lin |
|---|---|
| 論文名稱: |
氣喘患者下呼吸道內暫態流場之數值研究 Numerical Study of Transient Flow in Lower Respiratory Tract for Asthmatics |
| 指導教授: |
黃啟鐘
Hwang, Chii-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 氣喘 、分歧管 、暫態流 、下呼吸道 |
| 外文關鍵詞: | Asthmatics, Lower Respiratory, Transient |
| 相關次數: | 點閱:132 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為治療氣喘,探討氣管內的流場現是不容分辯且無爭議的。此方面研究大致上可分為數值模擬、理論分析及實驗操作。本文中使用計算流體力學之方法,探討暫態下空氣流經氣喘患者下呼吸道分歧管之行為。首先,使用設計軟體CATIA建立下呼吸道氣管模型(分歧管),再將此模型匯入Ansys FLUENT 13.0軟體於流場區域內建立非結構四面體網格。在此商用軟體Ansys FLUENT 13.0被用來計算進行三維不可壓縮流。為提升計算效率,本研究使用多核心個人電腦進行平行運算。為評估上述相關程式及求解方法之正確性,首先探討典型分歧管穩態層流與暫態層流之流場現象,並將計算答案結果與相關文獻之結果做比對,接著進行氣喘患者下呼吸道分歧管之穩態與暫態層流計算。由計算結果可觀察出口端、分歧管管身部分及入口端等區域之速度分佈現象。除了探討二次流、渦流及穩態、暫態各時間下不同入口條件導致之差異等物理現象外,也可分析氣喘患者與健康狀態正常下一般分歧管流之差異。
Due to the prosper of petrochemical industry, therefore, people are suffering from the respiratory diseases such asthma. The air pollution problems become serious. In order effectively treat asthmatic disease, investigation of flow phenomena in bifurcating airway is imperative and meaningful. In this topic, the research approaches were put divide into numerical simulation, theoretical analysis and experiment respectively. By using the computational fluid dynamics (CFD )in both two- and three-dimensional bifurcating tube models. The flow phenomena of air on passing through the lower bifurcating airway in asthmatics was investigated , The commercial software CATIA is adopted to construct the model of bifurcate airway. Then these data were exported into Ansys FLUENT software to generate unstructured meshes. Finally Ansys FLUENT is utilized to complete the dimensional unsteady incompressible flow numerical modeling. For promoting the computational efficiency, those cases are operated on a personal computer with multiple cores. To evaluate the above-mentioned numerical approach and related programs, the steady laminar flow and unsteady laminar flow passing through a normal bifurcating airway were studied . Then, the steady / transient flow passing through an asthmatic bifurcating airway were studied, the numerical results were compared with those data in the related papers. From the velocity distributions on branch part of airway ,on the inlet and outlet planes, the flow behavior are observed. And the secondary flow and vortex flow were observed and the physical behavior for the steady and transient flows at different time and inlet condition were studied, the difference between typical case and asthmatic bifurcating airway flows can be compared.
【1】 Weibel, E. R., Morphometry of the Human Lung, Academic Press, 1963, New York, Springer, Berlin.
【2】 Zhao, Y., and Lieber, B. B., Steady Inspiratory Flow in A Model Symmetric Bifurcation, ASME Journal of Biomechanical Engineering, Vol. 116, 1994, pp. 488-496.
【3】 Zhao, Y., and Brunskill, C. T., and Lieber, B. B., Inspiratory and Expiratory Steady Flow Analysis in A Model Symmetrically Bifurcating Airways, ASME Journal of Biomechanical Engineering, Vol. 119, 1997, pp. 52-58.
【4】 Calay, R. K., Kurujareon, J., Holdo, A. E. “umerical Simulation of Respiratory Flow Pattern within Human Lung,Respiratory Physiology & Neurobiology, Vol. 130, pp. 201-221, 2002.
【5】 Mochizuki, S., Convective Mass Transport during Ventilation in A Model of Branched Airways of Human Lungs, Proceedings of Pacific Symposium on Flow Visualization and Image Processing 4, 2003, Chamonix Mont-Blanc, France.
【6】 Lambert, R. K., Codd, S. L., Alley, M. R., and Pack, R. J., Physical Determinats of Bronchial Mucosal Folding, Journal of Applied Physiology, Vol. 77, pp. 1206-1216, 1994.
【7】 Wiggs, B. R., Hrousis, C. A., Drazen, J. M., and Kamm, R. D.,On The Mechanism of Mucosal Folding in Normal and Asthmatic Airways, Journal of Applied Physiology, Vol. 83, pp. 1814-1821, 1997.
【8】 Hrousis, C. A., Wiggs, B. R., Drazen, J. M., Parks, D. M., and Kamm, R. D.,Mucosal Folding in Biologic Vessels, Journal of Biomechanical Engineering, Vol. 124, pp. 334-342, 2002.
【9】 Ertbruggen, C. V., Hirsch, C., and Paiva, M., Anatomically Based Three – Dimensional Model of Airways to Simulate Flow and Particle Transport Using Computational Fluid Dynamics,Journal of Applied Physiology, Vol. 98 , pp. 970-980, 2005.
【10】 De Backer, J. W., Vos, W. G., Devolder, A., Verhulst, S. L., Germonpré, P., Wuyts, F. L., Parizel, P. M., and De Backer, W., Computational Fluid Dynamics Can Detect Changes in Airway Resistance in Asthmatics after Acute Bronchodilation, Journal of Biomechanics, Vol. 41, pp. 106-113, 2008.
【11】 Donovan, G. M., and Tawhai, M. H., A Simplified Model of Airway Narrowing Due to Bronchial Mucosal Folding,Respiratory Physiology & Neurobiology, Vol. 171, pp. 144-150, 2010.
【12】 Zhang, H., and Papadakis, G., Computational Analysis of Flow Structure and Particle Deposition in A Single Asthmatic Human Airway Bifurcation, Journal of Biomechanics, Vol. 43, pp. 2453-2459, 2010.
【13】 Ansys Fluent User Guide, Ver.13, Ansys Inc.
【14】 Van Doormaal, J. P., and Raithby, G. D., Enhancements of the SIMPLE Methods for Predicting Incompressible Fluid Flows, Num. Heat Mass Transfer, Vol. 7, pp. 147-163, 1984.
【15】 蕭宏達、邱鈺雯、陳明志,“實與人為分歧呼吸道內之流場與氣體交換現象分析 ,第十五屆全國計算流體力學學術研討會.
【16】 CATIA Documentation, DASSOUALT SYSTEM, 2002.
【17】 Rossow, C.-C., A Flux-Splitting Scheme for Compressible and Incompressible Flows, J. Compt. Phys., Vol. 164, pp. 104-122, 2000.
【18】 Frink, N. T., Parikh, P., and Pirzadeh, S., A Fast Upwind Solver for the Euler Equation on Three-Dimensional Unstructured Meshes, AIAA Paper 91-0102, 1991.
【19】 Rossow, C.-C., Extension of a Compressible Code Toward the Incompressible Limit, AIAA Journal, Vol. 41, No. 12, pp. 2379-2386, 2003.
【20】 Wiggs, B. R., Moreno, R., Hogg, J. C., Hilliam, C., and Paré, P. D., A Model of the Mechanics of Airway Narrowing, Journal of Applied Physiology, Vol. 69, pp. 849-860, 1990.
【21】 Liu, C. Y., and Hwang , C. J., New Strategy for Unstructured Mesh Generation, AIAA Journal, vol. 39, No. 6, pp. 1078-1085, June 2001.
【22】 Liu, Y., So, R. M. C., and Zhang, C. H., Modeling the Bifurcating Flow in A Human Lung Airway, Journal of Biomechanical, Vol. 35, pp. 465-473, 2002.
【23】 Dean, W. R., Note on the Motion of Fluid in a Curved Pipe, Philosophical Magazine 4 (Suppl.7), pp. 208-223, 1927.
【24】 Z. Zhang, C. Kleinstreuer, C.S. Kim, Gas–solid two-phase flow in a triple bifurcation lung airway model, International Journal of Multiphase Flow 28 (2002) 1021–1046
【25】 Z. Zhang and C. Kleinstreuer, Transient airflow structures and particle transport in a sequentially branching lung airway model , Depletion layer formation in suspensions of elastic capsules in Newtonian and viscoelastic fluids Phys. Fluids 24, 061902 (2012)