簡易檢索 / 詳目顯示

研究生: 詹士倫
Zhan, Shi-Lun
論文名稱: 藉由應變引發BiSc的拓撲相變
Strain-induced Topological Phase Transition in BiSc
指導教授: 張泰榕
Chang, Tay-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 41
中文關鍵詞: 第一原理應變拓撲絕緣體
外文關鍵詞: first-principles, strain, topological insulator
相關次數: 點閱:108下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過第一原理計算,我們研究了BiSc在不同應變下的能帶結構和拓撲不變量。我們討論的應變範圍是-5%到+5%。隨著應變增加,Γ點會打開能隙,而X點的能隙由大變小,能隙關閉後再由小變大,經歷了能帶反轉。結果,BiSc從金屬轉變為拓撲絕緣體,然後從拓撲絕緣體轉變為一般絕緣體。另一方面,我們也討論了自旋軌道耦合對不同拓撲結構的影響。隨著自旋軌道耦合的強度增加,如果X點有經歷能帶反轉,那麼就會是拓撲絕緣體,否則,就會是一般絕緣體。

    Using the first-principles calculation, we studied the band structure and topological invariants of BiSc under different strains. The strain range we discussed is -5% to +5%. With further increase of the strain, the energy gap at the Γ point will open, the energy gap at the X point will decrease to zero and then increase, band inversion appears at the X point. Consequently, BiSc has undergone the transition from metal to topological insulator and topological insulator to normal insulator. On the other hand, we also discussed the effect of spin-orbit coupling on different topologies. As the spin-orbit coupling strength increases, if the X point undergoes a band inversion, then it will be a topological insulator, otherwise, it will be a normal insulator.

    摘要 ii 英文延伸摘要 iii 目錄 x 表目錄 xi 圖目錄 xii 第一章 導論 1 第二章 理論與計算方法 4 2.1 拓撲不變量與Wilson loop 4 2.2 Wilson loop的判斷方法 6 2.3 計算方法 9 第三章 結果與討論 10 3.1 BiSc的幾何結構 10 3.2 BiSc的能帶結構 13 3.3 BiSc的應變與拓撲相變 15 3.4 BiSc的自旋軌道耦合影響 29 第四章 結論 36 參考文獻 38 附錄 39

    [1] L.Fu, C.L.Kane, and E.J.Mele, Phys. Rev. Lett. 98, 1 (2007).
    [2] T.Zhang, Y.Jiang, Z.Song, H.Huang, Y.He, Z.Fang, H.Weng, and C.Fang, Nature 566, 475 (2019).
    [3] B.Bradlyn, L.Elcoro, J.Cano, M.G.Vergniory, Z.Wang, C.Felser, M.I.Aroyo, and B.A.Bernevig, Nature 547, 298 (2017).
    [4] H.C.Po, A.Vishwanath, and H.Watanabe, Nat. Commun. 8, 1 (2017).
    [5] L.Fu and C.L.Kane, Phys. Rev. B - Condens. Matter Mater. Phys. 74, 1 (2006).
    [6] L.Fu and C.L.Kane, Phys. Rev. B - Condens. Matter Mater. Phys. 76, 1 (2007).
    [7] R.Yu, X.L.Qi, A.Bernevig, Z.Fang, and X.Dai, Phys. Rev. B - Condens. Matter Mater. Phys. 84, 1 (2011).
    [8] H.Weng, R.Yu, X.Hu, X.Dai, and Z.Fang, Adv. Phys. 64, 227 (2015).
    [9] H.Zhang, C.X.Liu, X.L.Qi, X.Dai, Z.Fang, and S.C.Zhang, Nat. Phys. 5, 438 (2009).
    [10] W.Setyawan and S.Curtarolo, Comput. Mater. Sci. 49, 299 (2010).
    [11] J.Liu, Y.Xu, J.Wu, B.L.Gu, S.B.Zhang, and W.Duan, Acta Crystallogr. Sect. C Struct. Chem. 70, 118 (2014).

    無法下載圖示 校內:2023-07-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE