| 研究生: |
陳怡伶 Chen, Yi-Ling |
|---|---|
| 論文名稱: |
都市風廊指認與風速驗證及推估 Identification of Urban Wind Corridors with Wind Speed Verification and Estimation |
| 指導教授: |
林子平
Lin, Tzu-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 都市規劃 、都市風環境 、風廊系統 、計算流體動力學 、評估公式 |
| 外文關鍵詞: | urban planning, urban wind environment, wind corridor system, computational fluid dynamic (CFD), assessment model |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在氣候變遷與極端氣候的情況下,促使都市熱島現象加峻,影響人們生活品質及環境舒適度。臺灣常處於高濕熱的氣候環境,因此藉由都市通風散熱的降溫策略,改善熱環境及降低熱危害風險尤為重要。前人研究大多為都市風廊規劃,尚缺乏風廊通風效益之佐證,本研究旨在補足此缺口,並以臺南地區為例,透過都市風廊指認與實測擬證都市風廊的通風效益。
在研究方法上,首先分析官方氣候資料,涵蓋歷史氣候重建、即時觀測與不同暖化程度模擬數據,以檢視臺南地區熱島現象與長年盛行風向,並評估未來升溫趨勢。再者運用地理資訊系統進行地表覆蓋分析與地表粗糙長度演算,據以指認都市風廊、鄰里風廊與連續通風路徑。同時透過風速實測與AKL FlowDesigner風場環境模擬,以此驗證風廊的通風效益。最後基於實證建立廣域尺度之風速推估公式,旨在解決模擬軟體其模擬範圍的限制,以及節省操作所需的時間成本,也針對風速剖面指數律定義都市通風率,並將通風潛力可視化,據以推廣風廊指認與氣候調適之應用。
研究結果發現都市大面積空地具提高風速之效益,相較路寬相同的兩道路,鄰近大面積空地者風速可提升50%。其次,道路走向是否順應主導風向乃影響通風效率首要因素,路寬影響次之,路寬在順應風向的情況下有助於環境風速的提升,高達90%的影響性。最後,交通樞紐十字路口處受雙向通風影響風速相較穩定,通風效率僅介於次要風廊與通風巷道之間。本研究依上述通風效益驗證之數據,建立廣域尺度風環境評估公式,並產製以通風率為核心指標之都市通風潛力地圖,成果可供利害關係人及跨領域專業者應用,作為都市風環境改善與氣候調適規劃之科學依據,進一步協助地方政府於都市設計、法規研擬與降溫策略中導入有效的風環境管制規範,落實提升人居環境品質與促進永續發展之目標。
Climate change and extreme heat have intensified urban heat island(UHI)effects, especially in Taiwan’s hot and humid environment, reducing thermal comfort and livability. Enhancing urban ventilation for heat dissipation is essential to reduce thermal risk. Most previous studies focus on wind corridor planning but lack empirical evidence of wind corridors effectiveness. This study addresses this gap by identifying and validating wind corridor ventilation benefits in Tainan, Taiwan.
The methodology begins with an analysis of official climate data, including historical reconstructions, real-time observations, and warming scenarios, to examine UHI trends and prevailing wind directions. Using Geographic Information System(GIS)analyzes land cover and calculates roughness length to identify urban and neighborhood wind corridors and continuous ventilation paths. Field measurements and FlowDesigner simulations were conducted to assess ventilation performance. A large-scale wind speed prediction model was also developed to overcome simulation limitations and reduce operational costs. Additionally, urban ventilation potential map was produced based on power law profiles.
Results show that large open spaces significantly enhance wind speed up to 50% higher near such areas. Road orientation aligned with prevailing winds is the most critical factor, influencing wind speed by up to 90%, more than road width. Intersection also shows stable wind conditions, benefiting from bidirectional flow. Based on the findings, a large-scale wind environment model and ventilation potential map were developed. These tools support urban design, regulation, and climate adaptation strategies, helping governments implement effective ventilation controls to improve urban quality and sustainability.
AKL FlowDesigner. Sample Simulations. Retrieved from https://www.akl.co.jp/en/index.php/applications/animations (April. 08, 2025)
Alcoforado, M. J., Andrade, H., Lopes, A., & Vasconcelos, J. (2009). Application of climatic guidelines to urban planning: the example of Lisbon (Portugal). Landscape and urban planning, 90(1-2), 56-65. https://doi.org/10.1016/j.landurbplan.2008.10.006
Ansys. Fluid Analysis. Retrieved from https://www.ansys.com/products/3d-design#tab1-3 (April. 08, 2025)
Ashie, Y., Tokairin, T., Kono, T., & Takahashi, K. (2006). Numerical simulation of urban heat island in a ten-kilometer square area of central Tokyo. Annual report of the earth simulator center April, 45-48.
ASHRAE Standard 55. (2010). Thermal environment conditions for human occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta.
Barlag, A. B., & Kuttler, W. (1990). The significance of country breezes for urban planning. Energy and Buildings, 15(3), 291-297. https://doi.org/10.1016/0378-7788(90)90001-Y
Blocken, B. (2015). Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment, 91, 219-245. https://doi.org/10.1016/j.buildenv.2015.02.015
Bottema, M. (1997). Urban roughness modelling in relation to pollutant dispersion. Atmospheric Environment, 31(18), 3059-3075. https://doi.org/10.1016/S1352-2310(97)00117-9
Bundesnaturschutzgesetz, Germany, §3-4. (2013). https://www.gesetze-im-internet.de/bnatschg_2009/
Cermak, J. E., Davenport, A. G., Plate, E. J., & Viegas, D. X. (Eds.). (2013). Wind climate in cities (Vol. 277). Springer Science & Business Media.
Chao, R., Yan-yung, N. E., & Lutz, K. (2010). Urban climatic map studies: a review. International journal of climatology, 31(15), 2213-2233. https://doi.org/10.1002/joc.2237
Counihan, J. O. (1975). Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972. Atmospheric Environment (1967), 9(10), 871-905. https://doi.org/10.1016/0004-6981(75)90088-8
Eum, J. H., Scherer, D., Fehrenbach, U., Köppel, J., & Woo, J. H. (2013). Integrating urban climate into urban master plans using spatially distributed information—The Seoul example. Land Use Policy, 34, 223-232. https://doi.org/10.1016/j.landusepol.2013.03.016
European Centre for Medium-Range Weather Forecasts. (2024). Copernicus: May 2024 marks 12th consecutive month of record-high temperatures. Copernicus Climate Change Service. Retrieved from https://climate.copernicus.eu/copernicus-may-2024-12th-consecutive-month-record-high-temperatures
Grimmond, C. S. B., & Oke, T. R. (1999). Aerodynamic properties of urban areas derived from analysis of surface form. Journal of Applied Meteorology and Climatology, 38(9), 1262-1292. https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
Grunwald, L., Kossmann, M., & Weber, S. (2019). Mapping urban cold-air paths in a Central European city using numerical modelling and geospatial analysis. Urban Climate, 29, 100503. https://doi.org/10.1016/j.uclim.2019.100503
Gu, K., Fang, Y., Qian, Z., Sun, Z., & Wang, A. (2020). Spatial planning for urban ventilation corridors by urban climatology. Ecosystem Health and Sustainability, 6(1), 1747946. https://spj.science.org/doi/10.1080/20964129.2020.1747946
He, B. J., Ding, L., & Prasad, D. (2019). Enhancing urban ventilation performance through the development of precinct ventilation zones: A case study based on the Greater Sydney, Australia. Sustainable Cities and Society, 47, 101472. https://doi.org/10.1016/j.scs.2019.101472
He, B. J., Ding, L., & Prasad, D. (2020). Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence. Sustainable Cities and Society, 60, 102289. https://doi.org/10.1016/j.scs.2020.102289
He, Y., Tablada, A., & Wong, N. H. (2018). Effects of non-uniform and orthogonal breezeway networks on pedestrian ventilation in Singapore's high-density urban environments. Urban climate, 24, 460-484. https://doi.org/10.1016/j.uclim.2017.03.005
He, Y., Tablada, A., & Wong, N. H. (2019). A parametric study of angular road patterns on pedestrian ventilation in high-density urban areas. Building and environment, 151, 251-267. https://doi.org/10.1016/j.buildenv.2019.01.047
Heaviside, C., Macintyre, H., & Vardoulakis, S. (2017). The urban heat island: implications for health in a changing environment. Current environmental health reports, 4, 296-305. https://doi.org/10.1007/s40572-017-0150-3
Honjo, T. (2012). Daily movement of heat island in Kanto area. 6th Japanese-German Meeting on Urban Climatology. Hiroshima Institute of Technology, Japan.
Hsieh, C. M., & Huang, H. C. (2016). Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation. Computers, Environment and Urban Systems, 57, 130-143. https://doi.org/10.1016/j.compenvurbsys.2016.02.005
Huang, J., Hao, T., Hou, S. S., & Jones, P. (2019, September). Simulation-Informed Urban Design: Improving Urban Microclimate in Real-World Practice in a High Density City. In IOP conference series: earth and environmental science (Vol. 329, No. 1, p. 012047). IOP Publishing. https://doi.org/10.1088/1755-1315/329/1/012047
Katzschner, L. (1988). The urban climate as a parameter for urban development. Energy and Buildings, 11(1-3), 137-147. https://doi.org/10.1016/0378-7788(88)90030-8
Kondo, J., & Yamazawa, H. (1986). Aerodynamic roughness over an inhomogeneous ground surface. Boundary-Layer Meteorology, 35, 331-348. https://doi.org/10.1007/BF00118563
Kress, R. (1979). Regionale Luftaustauschprozesse und ihre Bedeutung für die räumliche Planung (No. 32). Bundesminister für Raumordnung, Bauwesen und Städtebau.
Ladybug Tools. Indoor Comfort. Retrieved from https://www.ladybug.tools/butterfly.html (April. 08, 2025)
Lin, P. Y., Cheng, C. T., Chen, Y. M., Chien, Y. T. (2020). The 40-year Taiwan Historical Climate Data, National Science and Technology Center for Disaster Reduction, New Taipei City, Taiwan (Chinese).
Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International journal of biometeorology, 52, 281-290. https://doi.org/10.1007/s00484-007-0122-7
Lin, Z. A., Chang, C., & Lin, T. P. (2024). Designers' guided site shading strategies: A simplified model for radiative cooling. Building and Environment, 262, 111824. https://doi.org/10.1016/j.buildenv.2024.111824
Maing, M. (2022). Superblock transformation in Seoul Megacity: Effects of block densification on urban ventilation patterns. Landscape and Urban Planning, 222, 104401. https://doi.org/10.1016/j.landurbplan.2022.104401
Matzarakis, A., & Mayer, H. (1992). Mapping of urban air paths for planning in Munich. Wiss. Ber. Inst. Meteor. Klimaforsch. Univ. Karlsruhe, 16, 13-22.
Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments—application of the RayMan model. International journal of biometeorology, 51, 323-334. https://doi.org/10.1007/s00484-006-0061-8
Memon, R. A., & Leung, D. Y. (2010). Impacts of environmental factors on urban heating. Journal of Environmental Sciences, 22(12), 1903-1909. https://doi.org/10.1016/S1001-0742(09)60337-5
Murray, V., & Ebi, K. L. (2012). IPCC special report on managing the risks of extreme events and disasters to advance climate change adaptation (SREX). J Epidemiol Community Health, 66(9), 759-760. https://doi.org/10.1136/jech-2012-201045
NARITA, K. I., MIKAMI, T., SUGAWARA, H., HONJO, T., KIMURA, K., & KUWATA, N. (2004). Cool-island and cold air-seeping phenomena in an urban park, Shinjuku Gyoen, Tokyo. Geographical Review of Japan, 77(6), 403-420_1. https://doi.org/10.4157/grj.77.403
Ng, E. (2009). Policies and technical guidelines for urban planning of high-density cities–air ventilation assessment (AVA) of Hong Kong. Building and environment, 44(7), 1478-1488. https://doi.org/10.1016/j.buildenv.2008.06.013
Ng, E., Ren, C., & Katzschner, L. (2009). Urban climatic mapping in Hong Kong. In Proceedings of 2nd International Conference on Countermeasures to Urban Heat Islands, 14pages.
Ng, E., Yau, R., Wong, K., Ren, C., & Katszchner, L. (2012). Final Report of Hong Kong Urban Climatic Map and Standards for Wind Environment-Feasibility Study. Planning Department of Hong Kong Government: Hongkong, China. https://doi.org/10.13140/RG.2.1.5165.0000
Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly journal of the royal meteorological society, 108(455), 1-24. https://doi.org/10.1002/qj.49710845502
Peng, F., Wong, M. S., Wan, Y., & Nichol, J. E. (2017). Modeling of urban wind ventilation using high resolution airborne LiDAR data. Computers, Environment and Urban Systems, 64, 81-90. https://doi.org/10.1016/j.compenvurbsys.2017.01.003
Ramponi, R., Blocken, B., de Coo, L. B., & Janssen, W. D. (2015). CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Building and Environment, 92, 152-166. https://doi.org/10.1016/j.buildenv.2015.04.018
The Taiwan Climate Change Projection Information and Adaptation Knowledge Platform. (2021). Statistical and Dynamical Downscaling Methodology. Retrieved from https://tccip.ncdr.nat.gov.tw/km_publish_data_document_one.aspx?dd_id=20210609212941
Thorsson, S., & Eliasson, I. (2003). An intra-urban thermal breeze in Göteborg, Sweden. Theoretical and Applied Climatology, 75, 93-104. https://doi.org/10.1007/s00704-003-0725-9
Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., & Shirasawa, T. (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of wind engineering and industrial aerodynamics, 96(10-11), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058
Tominaga, Y., Wang, L. L., Zhai, Z. J., & Stathopoulos, T. (2023). Accuracy of CFD simulations in urban aerodynamics and microclimate: Progress and challenges. Building and Environment, 243, 110723. https://doi.org/10.1016/j.buildenv.2023.110723
Verein Deutscher Ingenieure (2015) Environmental meteorology-climate and air pollution maps for cities and regions. VDI-Guideline 3787, Part 1, Germany.
Vurro, G., & Carlucci, S. (2024). Contrasting the features and capabilities of urban microclimate simulation tools. Energy and Buildings, 114042. https://doi.org/10.1016/j.enbuild.2024.114042
Wang, W., Yang, T., Li, Y., Xu, Y., Chang, M., & Wang, X. (2020). Identification of pedestrian-level ventilation corridors in downtown Beijing using large-eddy simulations. Building and Environment, 182, 107169. https://doi.org/10.1016/j.buildenv.2020.107169
Xu, Y., Ren, C., Ma, P., Ho, J., Wang, W., Lau, K. K. L., Lin, H., & Ng, E. (2017). Urban morphology detection and computation for urban climate research. Landscape and urban planning, 167, 212-224. https://doi.org/10.1016/j.landurbplan.2017.06.018
Xu, Y., Wang, W., Chen, B., Chang, M., & Wang, X. (2021). Identification of ventilation corridors using backward trajectory simulations in Beijing. Sustainable Cities and Society, 70, 102889. https://doi.org/10.1016/j.scs.2021.102889
Zhao, Y., Li, R., Feng, L., Wu, Y., Niu, J., & Gao, N. (2022). Boundary layer wind tunnel tests of outdoor airflow field around urban buildings: A review of methods and status. Renewable and Sustainable Energy Reviews, 167, 112717. https://doi.org/10.1016/j.rser.2022.112717
九典建築師事務所網站(2025)。臺北市萬華區青年社會住宅(一期)。引用於2025年4月28日,取自https://www.bioarch.com.tw/work/wanhua-qingnian-public-housing
中華民國內政部戶政司全球資訊網(2025)。114年3月人口統計資料縣市人口性比例及人口密度。引用於2025年5月2日,取自https://www.ris.gov.tw/app/portal/346
交通部中央氣象署CODiS氣候觀測資料查詢服務網站(2023)。測站時序報表。引用於114年4月1日,取自https://codis.cwa.gov.tw/StationData?target=station
李岳蓉(2024)。都市綠化之可及性評估及熱輻射降溫模式探討。國立成功大學建築系碩士論文,臺南市。https://hdl.handle.net/11296/4rzsk6
林子平(2021)。都市的夏天為什麼愈來愈熱?:圖解都市熱島現象與退燒策略。臺北市:商周。
林子平、黃瑞隆(2014)。建築外牆隔熱及蓄熱效果對室內環境溫度影響之探討。內政部建築研究所。
政府資料開放平台(2022)。臺南市政府道路長度面積資訊。引用於113年4月18日,取自https://data.gov.tw/dataset/121007
洪致文(2010)。風在城市街道紋理中的歷史刻痕二戰時期台北簡易飛行場的選址與空間演變。地理學報, (59), 81-104。https://doi.org/10.6161/jgs.2010.59.05
國土測繪圖資服務雲-內政部國土測繪中心(2024)。臺灣通用電子地圖。引用於114年2月19日,取自http://maps.nlsc.gov.tw/S_Maps/wmts
國立成功大學(2023)。永續城鄉宜居環境-臺中都市熱島效應空間策略計畫,臺中市政府。
陳怡伶、王柳臻、林子平,2023。高解析歷史氣候資料於都市風廊系統建構之應用-以嘉義市為例,第十屆全國風工程研討會,臺南市。
新北市政府(2013)。新北市板橋(江翠北側地區)都市設計審議原則。https://www.rootlaw.com.tw/LawArticle.aspx?LawID=B020160001013900-1020916
臺中市政府(2024)。變更臺中市都市計畫 (水湳機場原址整體開發區)細部計畫 (第二次通盤檢討)書。
臺中市政府都市發展局(2020)。臺中市都市更新建築容積獎勵辦法。 https://lawsearch.taichung.gov.tw/GLRSout/LawContent.aspx?id=GL003931
趙立衡(2023)。改善都市通風之建築量體型態策略研究。國立成功大學建築系碩士論文,臺南市。https://hdl.handle.net/11296/bevfn2
蔡沛淇(2023)。 基於都市風環境永續發展之風廊系統構建與應用。國立成功大學建築系碩士論文,臺南市。https://hdl.handle.net/11296/3vuuhp
鄭晶尹(2024)。氣候變遷對都市能耗與人體熱舒適之衝擊與調適。國立成功大學建築系博士論文,臺南市。https://hdl.handle.net/11296/p24752
羅子雯(2018)。結合局部氣候分區及景觀生態指標之都市氣候地圖建置及應用。國立成功大學建築系碩士論文,臺南市。https://hdl.handle.net/11296/q7wp74
校內:2028-07-01公開