簡易檢索 / 詳目顯示

研究生: 陳裕揚
Chen, Yu-Yang
論文名稱: 氣候變遷對台灣產業產出之影響研究
The Research of the Impact of Climate Change on Industries Outputs in Taiwan
指導教授: 郭彥廉
Kuo, Yen-Lien
學位類別: 碩士
Master
系所名稱: 社會科學院 - 經濟學系
Department of Economics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 51
中文關鍵詞: Cobb-Douglas模型氣候變遷產業脆弱度天氣與經濟
外文關鍵詞: Cobb-Douglas model, Climate-change, Vulnerability of industry
相關次數: 點閱:127下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討氣候變遷情境下,天氣變數對於臺灣農業與工商服務產業產出的影響與產業脆弱度分析,其中工商服務業又包括:水電燃氣業、社會及個人服務業、金融保險房地產與工商服務、商業、運輸倉儲及通信業、製造業、營造業、礦業,共八大行業。研究資料來源來自於民國70年到100年度《工商及服務業普查》、《農業統計年報》與大氣研究資料庫。本研究使用Chou et al(2007)的方法,將Cobb-Douglas生產函數模型,考量長期氣候變遷情況後的改良形式,稱之為Economy-Climate Model,稱為C-D-C模型,初步建立天氣與產業之間的聯結。且為了修正多重共線性問題,將經濟變數除以產業從業人數的形式呈現。而在實證模型中則分別控制時間、地區與加入逐步迴歸,使用4種迴歸方式分別檢視天氣變數對產業的從業人均產值的顯著性。結果發現天氣變數對農業的影響最大,而在工商業中,則是以營造業與運輸倉儲業對天氣變數最為敏感,因兩者產業特性不同而導致營造業與運輸倉儲對天氣變數的顯著方向相反。另外,農業、礦業與商業也對臺灣的極端天氣的變數較為敏感,如:豪大雨天數、日均溫小於10度天數等。最後,本研究透過臺灣氣候變遷推估與資訊平台(TCCIP)所提供的氣候變遷在A1B情境下的氣候推估模式,比對2020-2039年相較於1980-1999年的雨量與溫度變化與本迴歸實證結果結合,模擬出氣候變遷情境下,近未來臺灣各產業的從業人均產值變化率。

    This study mainly discusses the relationship between weather and outputs ofindustries. We obtain data from Industry, Commerce and Service Census, Agricultural Statistics Yearbook and the Data Bank for Atomspheric Research. We follow the Chou et al (2007) method by using the improved Cobb-Douglas production model, which taking climate change into considerations, named C-D-C. With C-D-C we can initially establishedassociation between weather and industries. To fix the multicollinearity problem in C-D, we use the percapita form to eliminate it. And we then control the time and regions, and use thestepwise regression to buildmodels. Result shows that agriculture is the most affected by weather variables. Except agriculture, the construction industry and transport industry are the most affected in the study by weather variables. Study also shows that agriculture, business industry and mining industry are most affected by extreme weather. For example, the numbers of days which rain over 200mm, the numbers of dayswhich average temperature is lower than 10℃. Finally, we use the datas from Taiwan Climate Change Information Platform, to simulatethe rate of change of outputs of all industries in the future.

    第一章 緒論 1 第一節研究背景與動機 1 第二節研究目的 3 第三節論文架構 4 第二章 文獻回顧 5 第一節田野調查法 5 第二節計量方法 6 第三節氣候變遷、能源與產業 8 第三章 研究方法 10 第一節實證模型 10 第二節資料來源 12 第三節變數定義 14 第四節敘述統計與相關係數 17 第五節實證結果 24 第六節氣候變遷情境模擬 44 第四章 結論與建議 46 第一節研究特色 46 第二節研究結論與發現 47 第三節未來研究與建議 48 參考文獻 49 圖目錄 圖1.地面天氣測站分佈圖 13 表目錄 表1.地面天氣測站與對應縣市 14 表2.天氣變數的敘述統計 17 表3.水電燃氣業的敘述統計 18 表4.社會及個人服務業的敘述統計 18 表5.金融保險房地產與工商服務業的敘述統計 18 表6.商業的敘述統計 19 表7.運輸倉儲與通信業的敘述統計 19 表8.製造業的敘述統計 19 表9.營造業的敘述統計 20 表10.礦業的敘述統計 20 表11.農業的敘述統計 20 表12.天氣變數相關係數 21 表13.工商業與農業相關係數 22 表14.人均修正後的工商業與農業相關係數 23 表15.水電燃氣業迴歸結果 27 表16.社會及個人服務業迴歸結果 29 表17.金融保險房地產與工商服務業迴歸結果 31 表18.商業迴歸結果 33 表19.運輸倉儲及通信業迴歸結果 35 表20.製造業迴歸結果 37 表21.營造業迴歸結果 39 表22.礦業迴歸結果 41 表23.農業迴歸結果 43 表24.2020-2039年相較於1980-1999年的氣候變遷情境模擬 45

    賴穎緻(2013),「天氣事件對台灣不同產業股價報酬率的影響」,國立政治大學財務管理研究所碩士論文。

    古明萱,「農藝學:第五章作物與溫度」,國立屏東科技大學線上講義,
    網址:http://cec.npust.edu.tw/e-learning/agronomy/%B2%C4%A4%AD%B3%B9.pdf

    許晃雄、吳宜昭、周佳、陳正達、陳永明、盧孟明(2011),「臺灣氣候變遷科學報告2011」,國家災害防救科技中心。

    Abler, D., Shortle, J., Rose, A. and Oladosu, G. (2000).“Characterizing regional economic impacts and responses to climate change.”Global and Planetary Change, 25,67–81.

    Bassi, A.M., Yudken, J.S. and Ruth, M. (2009). “Climate policy impacts on the competitiveness of energy-intensive manufacturing sectors.” Energy Policy,37, 3052–3060.

    Brouder, P. and Lundmark, L. (2011). “Climate change in Northern Sweden: intra-regional perceptions of vulnerability among winter-oriented tourism businesses.” Journal of Sustainable Tourism, 19(8), 919–933.

    Barnwal, P. and Kotani, K. (2013). “Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India” Ecological Economics, 87, 95–109.
    Chou, J., Dong, W. and Ye, D.(2007). “Construction of a novel economy-climate model” Chinese Science Bulletin,52(7),1006-1008.

    Chou, J., Dong, W. and Feng, G. (2009).“Application of an Economy–Climate Model to Assess the Impact of Climate Change” Advances in Atmospheric Sciences, 27(4), 957–965.

    Chhetri, N., Chaudhary, P., Tiwari, P.R. and Yadaw, R.B. (2011). “Institutional and technological innovation: Understanding agricultural adaptation to climate change in Nepal.” Applied Geography, 33, 142-150.

    Dell, M., Jones B.F. and Olken, B.A. (2013) “What Do We Learn from the Weather? The New Climate-Economy Literature.”Journal of Economic Literature, forthcoming.

    Eakin, H. and Conley J. (2002).“Climate variability and the vulnerability of ranching in southeastern Arizona: a pilot study” Climate Research, 21, 271–281.

    Horowitz, J.K. (2009). “The Income–Temperature Relationship in a Cross-Section of Countries and its Implications for Predicting the Effects of GlobalWarming.” Environ Resource Econ, 44, 475–493.

    Jopp, R., Delacy, T. and Mair J. (2010).“Developing a framework for regional destination adaptation to climate change.” Current Issues in Tourism, 13(6), 591–605.

    Lucena, A.F.P., Schaeffer, R., Szklo, A.S. (2010). “Least-cost adaptation options for global climate change impacts on the Brazilian electric power system.” Global Environmental Change, 20, 342–350.

    Lazo, J. K., Lawson, M., Larsen, P. H., and Waldman, D. M. (2011).“US economic sensitivity to weather variability.”Bulletin of the American Meteorological Society, 92(6), 709–720.

    Marshall, N.A. (2009). “Understanding social resilience to climate variability in primary enterprises and industries.”Global Environmental Change,20, 36–43.

    Nordhaus, W. (2006). “Geography and macroeconomics: New data and new findings.” Proc Natl Acad Sci, USA 103, 3510–3517.

    Nooij, M., Lieshout, R., and Koopmans, C. (2009). “Optimal blackouts: Empirical results on reducing the social cost of electricity outages through efficient regional rationing.” Energy Economics, 31, 342–347.

    Ng, P. and Zhao, X. (2010). “No matter how it is measured, income declines with global warming.” Ecological Economics,70, 963–970.

    Nicholas, A.K. and Durham W.H. (2012). “Farm-scale adaptation and vulnerability to environmental stresses: Insights from winegrowing in Northern California.” Global Environmental Change, 22,483–494.

    Rose, A., Benavides J., Chang S.E., Szczesniak, P., and Lim, D. (1997).”The Regional Economic Impact of an Earthquake: Direct and Indirect Effects of Electricity Lifeline Disruptions.” Journal of Regional Science, 37(3), 437-458.

    Rose, A., Oladosu, G. and Liao, S.Y. (2007). “Business Interruption Impacts of a Terrorist Attack on the Electric Power System of Los Angeles: Customer
    Resilience to a Total Blackout.”Risk Analysis, 27(3)

    Tervo, K. (2008). “The Operational and Regional Vulnerability of Winter Tourism to
    Climate Variability and Change: The Case of the Finnish Nature-Based Tourism Entrepreneurs.” Scandinavian Journal of Hospitality and Tourism, 8(4), 317–332.

    Taylor, D.R., Olwig, M.F. and Chhetri, N. (2012). “Adaptation as innovation, innovation as adaptation: An institutional approach to climate change.” Applied Geography, 33,107-111.

    Yuan, Z.(2011). “Analysis of agricultural input-output based on Cobb–Douglas production function in Hebei Province, North China.” African Journal of Microbiology Research, 5(32), 5916–5922.

    下載圖示 校內:立即公開
    校外:2016-09-05公開
    QR CODE