| 研究生: |
童彥翔 Tung, Yen-Hsiang |
|---|---|
| 論文名稱: |
利用團鏈共聚物定向自組裝製作無基材穿透式光柵應用於極紫外光干涉式微影 Free-standing transmission grating fabricated by block copolymer directed self-assembly for extreme ultraviolet interfermetric lithography |
| 指導教授: |
林俊宏
Lin, Chun-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 極紫外光干涉式微影 、奈米壓印 、團鏈共聚物定向自組裝 、電子束微影 |
| 外文關鍵詞: | Extreme ultraviolet interference lithography, nano-imprint, block copolymer directed self-assembly, E-beam lithography |
| 相關次數: | 點閱:166 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在干涉式微影中,為了得到較小週期的干涉條紋,勢必得要使用較小週期的穿透式光柵。一般而言,製作光柵是使用電子束微影的技術,但是使用電子束微影,若要製作小週期又大面積的結構,其價格十分昂貴,而且利用翻印母膜做為奈米壓印的模具的技術也較難製作較小週期的結構。因此,本實驗中希望可以不要額外製作光柵但又可以得到較小週期的光柵,我們使用團鏈共聚物(Block copolymer, BCP)定向自組裝(Directed self-assembly, DSA)的方式來製作較小週期的穿透式光柵。對BCP而言,改變其分子量可以得到不同週期的結構,因此若想得到不同週期的光柵可以簡單的改變其分子量。在團鏈共聚物定向自組裝的時候只需要製作可用來對準控制自組裝方向的結構即可,利用DSA可以輕易地做出週期小於50奈米的結構,且製作所需使用的儀器較為簡單以及花費的金錢也遠低於使用電子束微影製作大面積的光柵。
最後,本研究成功的利用團鏈共聚物定向自組裝的方式,在不同的範圍中製作出週期40奈米的結構,並且成功地將此結構製作成無基材穿透式光柵,本研究將此光柵配合上極紫外光干涉式微影的技術成功得到週期為20奈米的結構。
In general, transmission grating for extreme ultraviolet interference lithography is fabricated by E-beam lithography. However, if we want to fabricate high resolution transmission grating, it will be high cost and it can only fabricate in small range. In this study, we want to fabricate high resolution transmission grating without using high cost process. We choose block copolymer directed self-assembly to achieve our goal.
Block copolymer directed self-assembly can easily fabricate sub-50 nm period nanostructure. In block copolymer lithography, it have to fabricate periodic template to direct block copolymer. We choose the use of nano-imprint and I-line mask exposure aligner to fabricate periodic template. In block copolymer directed self-assembly, we successfully fabricated 40 nm period nanostructure. Then, we use PMGI as sacrificial layer, we successfully fabricated free-standing block copolymer transmission grating. Because transmission grating was fabricated by different materials, we simulated their optical behavior. Optical behavior of transmission grating was analyzed by rigorous coupled-wave analysis. Finally, block copolymer transmission applied in extreme ultraviolet interference lithography.
In conclusion, we applied 40 nm period block copolymer transmission grating in extreme ultraviolet interference lithography, and we successfully achieved half-pitch pattern.
1. G. E. Moore, "Progress in digital integrated electronics," 1975 International Electron Devices Meeting. (Technical digest), 11-13 (1975).
2. V. Sidorkin, E. van Veldhoven, E. van der Drift, P. Alkemade, H. Salemink, and D. Maas, "Sub-10-nm nanolithography with a scanning helium beam," J. Vac. Sci. Technol. B 27, L18-L20 (2009).
3. A. Tavakkoli, S. N. Piramanayagam, M. Ranjbar, R. Sbiaa, and T. C. Chong, "Path to achieve sub-10-nm half-pitch using electron beam lithography," J. Vac. Sci. Technol. B 29, 011035 1-7 (2011).
4. B. Paivanranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, "Sub-10 nm patterning using EUV interference lithography," Nanotechnology 22 , 375302 1-7 (2011).
5. Y. S. Jung, J. B. Chang, E. Verploegen, K. K. Berggren, and C. A. Ross, "A Path to Ultranarrow Patterns Using Self-Assembled Lithography," Nano Letters 10, 1000-1005 (2010).
6. "International Technology Roadmap for Semnconductors 2013 Edition Lithography,http://www.itrs.net/Links/2013ITRS/2013Chapters/2013Litho.pdf," (2014).
7. Y. Ji, Y. C. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H. Shtrikman, "An electronic Mach-Zehnder interferometer," Nature 422, 415-418 (2003).
8. Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, "Fabrication of nanostructures with laser interference lithography," J. Alloy. Compd. 449, 261-264 (2008).
9. T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, "Large-area achromatic interferometric lithography for 100 nm period gratings and grids," J. Vac. Sci. Technol. B 14, 4167-4170 (1996).
10. G. Tallents, E. Wagenaars, and G. Pert, "OPTICAL LITHOGRAPHY Lithography at EUV wavelengths," Nat. Photonics 4, 809-811 (2010).
11. K. E. Gonsalves, M. Thiyagarajan, J. H. Choi, P. Zimmerman, F. Cerrina, P. Nealey, V. Golovkina, J. Wallace, and N. Batina, "High performance resist for EUV lithography," Microelectronic Engineering 77, 27-35 (2005).
12. K. W. Gotrik, A. F. Hannon, J. G. Son, B. Keller, A. Alexander-Katz, and C. A. Ross, "Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors," Acs Nano 6, 8052-8059 (2012).
13. Y.-R. Lin, "Fabrication of a reliable free-standing transmission grating for extreme ultraviolet interfermetric lithography," master thesis in Department of photonics(National Cheng Kung University, 2013).
14. B. J. Lin, Optical lithography : here is why (SPIE, Bellingham, Wash., 2009).
15. F. S. Bates, and G. H. Fredrickson, "BLOCK COPOLYMER THERMODYNAMICS - THEORY AND EXPERIMENT," Annu. Rev. Phys. Chem. 41, 525-557 (1990).
16. L. Leibler, "THEORY OF MICROPHASE SEPARATION IN BLOCK CO-POLYMERS," Macromolecules 13, 1602-1617 (1980).
17. M. J. Fasolka, and A. M. Mayes, "Block copolymer thin films: Physics and applications," Annual Review of Materials Research 31, 323-355 (2001).
18. D. J. Meier, "Theory of block copolymers .1. Domain formation in A-B block copolymers (Reprinted from J Polymer Sci, Part C, pg 81-98, 1969)," J. Polym. Sci. Pt. B-Polym. Phys. 34, 1821-1838 (1996).
19. E. Helfand, "BLOCK COPOLYMER THEORY .3. STATISTICAL-MECHANICS OF MICRODOMAIN STRUCTURE," Macromolecules 8, 552-556 (1975).
20. E. Helfand, and Z. R. Wasserman, "BLOCK COPOLYMER THEORY .4. NARROW INTERPHASE APPROXIMATION," Macromolecules 9, 879-888 (1976).
21. E. Helfand, and Z. R. Wasserman, "BLOCK COPOLYMER THEORY .5. SPHERICAL DOMAINS," Macromolecules 11, 960-966 (1978).
22. E. Helfand, and Z. R. Wasserman, "BLOCK CO-POLYMER THEORY .6. CYLINDRICAL DOMAINS," Macromolecules 13, 994-998 (1980).
23. M. W. Matsen, and M. Schick, "STABLE AND UNSTABLE PHASES OF A DIBLOCK COPOLYMER MELT," Phys. Rev. Lett. 72, 2660-2663 (1994).
24. M. W. Matsen, and F. S. Bates, "Unifying weak- and strong-segregation block copolymer theories," Macromolecules 29, 1091-1098 (1996).
25. M. W. Matsen, and F. S. Bates, "Origins of complex self-assembly in block copolymers," Macromolecules 29, 7641-7644 (1996).
26. P. Chen, H. J. Liang, R. Xia, J. S. Qian, and X. S. Feng, "Directed Self-Assembly of Block Copolymers on Sparsely Nanopatterned Substrates," Macromolecules 46, 922-926 (2013).
27. G. L. Liu, F. Detcheverry, A. Ramirez-Hernandez, H. Yoshida, Y. Tada, J. J. de Pablo, and P. F. Nealey, "Nonbulk Complex Structures in Thin Films of Symmetric Block Copolymers on Chemically Nanopatterned Surfaces," Macromolecules 45, 3986-3992 (2012).
28. K. G. A. Tavakkoli, A. F. Hannon, K. W. Gotrik, A. Alexander-Katz, C. A. Ross, and K. K. Berggren, "Rectangular Symmetry Morphologies in a Topographically Templated Block Copolymer," Advanced Materials 24, 4249-4254 (2012).
29. I. W. Hamley, "The Physics of Block Copolymers," Oxford University Press (1998).
30. J. G. Lee, Y. S. Jung, S.-H. Han, K.-M. Kim, and Y.-K. Han, "Long-Range Ordered Self-Assembly of Novel Acrylamide-Based Diblock Copolymers for Nanolithography and Metallic Nanostructure Fabrication," Advanced Materials 26, 2894-2900 (2014).
31. P. Mansky, and T. P. Russell, "FREE-SURFACE CONFINEMENT OF DIBLOCK COPOLYMER MULTILAYERS," Macromolecules 28, 8092-8095 (1995).
32. E. Huang, S. Pruzinsky, T. P. Russell, J. Mays, and C. J. Hawker, "Neutrality conditions for block copolymer systems on random copolymer brush surfaces," Macromolecules 32, 5299-5303 (1999).
33. T. Thurn-Albrecht, J. Schotter, C. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell, "Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates," Science 290, 2126-2129 (2000).
34. C. De Rosa, C. Park, B. Lotz, J. C. Wittmann, L. J. Fetters, and E. L. Thomas, "Control of molecular and microdomain orientation in a semicrystalline block copolymer thin film by epitaxy," Macromolecules 33, 4871-4876 (2000).
35. S. H. Kim, M. J. Misner, and T. P. Russell, "Solvent-induced ordering in thin film diblock copolymer/homopolymer mixtures," Advanced Materials 16, 2119-2123 (2004).
36. W. H. Huang, P. Y. Chen, and S. H. Tung, "Effects of Annealing Solvents on the Morphology of Block Copolymer-Based Supramolecular Thin Films," Macromolecules 45, 1562-1569 (2012).
37. Y. S. Jung, and C. A. Ross, "Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns," Advanced Materials 21, 2540-2545 (2009).
38. P. Mansky, Y. Liu, E. Huang, T. P. Russell, and C. J. Hawker, "Controlling polymer-surface interactions with random copolymer brushes," Science 275, 1458-1460 (1997).
39. X. M. Yang, R. D. Peters, P. F. Nealey, H. H. Solak, and F. Cerrina, "Guided self-assembly of symmetric diblock copolymer films on chemically nanopatterned substrates," Macromolecules 33, 9575-9582 (2000).
40. C. T. Black, and O. Bezencenet, "Nanometer-scale pattern registration and alignment by directed diblock copolymer self-assembly," IEEE Trans. Nanotechnol. 3, 412-415 (2004).
41. I. W. Hamley, J. P. A. Fairclough, N. J. Terrill, A. J. Ryan, P. M. Lipic, F. S. Bates, and E. TownsAndrews, "Crystallization in oriented semicrystalline diblock copolymers," Macromolecules 29, 8835-8843 (1996).
42. L. Zhu, S. Z. D. Cheng, B. H. Calhoun, Q. Ge, R. P. Quirk, E. L. Thomas, B. S. Hsiao, F. J. Yeh, and B. Lotz, "Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline-amorphous diblock copolymer," J. Am. Chem. Soc. 122, 5957-5967 (2000).
43. S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, and P. F. Nealey, "Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates," Nature 424, 411-414 (2003).
44. M. Salaun, M. Zelsmann, S. Archambault, D. Borah, N. Kehagias, C. Simao, O. Lorret, M. T. Shaw, C. M. S. Torres, and M. A. Morris, "Fabrication of highly ordered sub-20 nm silicon nanopillars by block copolymer lithography combined with resist design," J Mater Chem C 1, 3544-3550 (2013).
45. S. M. Park, M. P. Stoykovich, R. Ruiz, Y. Zhang, C. T. Black, and P. E. Nealey, "Directed assembly of lamellae-forming block copolymers by using chemically and topographically patterned substrates," Advanced Materials 19, 607-611 (2007).
46. L. Rockford, Y. Liu, P. Mansky, T. P. Russell, M. Yoon, and S. G. J. Mochrie, "Polymers on nanoperiodic, heterogeneous surfaces," Phys. Rev. Lett. 82, 2602-2605 (1999).
47. L. Rockford, S. G. J. Mochrie, and T. P. Russell, "Propagation of nanopatterned substrate templated ordering of block copolymers in thick films," Macromolecules 34, 1487-1492 (2001).
48. J. H. Mun, S. K. Cha, H. Kim, H.-S. Moon, J. Y. Kim, H. M. Jin, Y. J. Choi, J. E. Baek, J. Shin, and S. O. Kim, "Nanodomain Swelling Block Copolymer Lithography for Morphology Tunable Metal Nanopatterning," Small, 13 MAY 2014 accepted (2014).
49. K. G. A. Tavakkoli, S. M. Nicaise, A. F. Hannon, K. W. Gotrik, A. Alexander-Katz, C. A. Ross, and K. K. Berggren, "Sacrificial-Post Templating Method for Block Copolymer Self-Assembly," Small 10, 493-499 (2014).
50. J. Xu, T. P. Russell, and A. Checco, "Lattice Deformation and Domain Distortion in the Self-Assembly of Block Copolymer Thin Films on Chemical Patterns," Small 9, 779-784 (2013).
51. X. Zhang, K. D. Harris, N. L. Y. Wu, J. N. Murphy, and J. M. Buriak, "Fast Assembly of Ordered Block Copolymer Nanostructures through Microwave Annealing," ACS Nano 4, 7021-7029 (2010).
52. X. Zhang, J. N. Murphy, N. L. Y. Wu, K. D. Harris, and J. M. Buriak, "Rapid Assembly of Nanolines with Precisely Controlled Spacing from Binary Blends of Block Copolymers," Macromolecules 44, 9752-9757 (2011).
53. D. Borah, R. Senthamaraikannan, S. Rasappa, B. Kosmala, J. D. Holmes, and M. A. Morris, "Swift Nanopattern Formation of PS-b-PMMA and PS-b-PDMS Block Copolymer Films Using a Microwave Assisted Technique," ACS Nano 7, 6583-6596 (2013).
54. K. W. Gotrik, and C. A. Ross, "Solvothermal Annealing of Block Copolymer Thin Films," Nano Letters 13, 5117-5122 (2013).
55. V. Banine, and R. Moors, "Plasma sources for EUV lithography exposure tools," J Phys D Appl Phys 37, 3207-3212 (2004).
56. U. Stamm, "Extreme ultraviolet light sources for use in semiconductor lithography - state of the art and future development," J Phys D Appl Phys 37, 3244-3253 (2004).
57. K. A. Goldberg, P. P. Naulleau, S. B. Rekawa, P. E. Denham, J. A. Liddle, E. M. Gullikson, K. Jackson, E. H. Anderson, J. S. Taylor, G. E. Sommargren, H. N. Chapman, D. W. Phillion, M. Johnson, A. Barty, R. Soufli, E. A. Spiller, C. C. Walton, and S. Bajt, "Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems," Proc. SPIE 5900, 114-123 (2005).
58. R. Tatchyn, E. Kallne, A. Toor, T. Cremer, and P. Csonka, "OPERATION OF A NORMAL-INCIDENCE TRANSMISSION GRATING MONOCHROMATOR AT ALLADIN," Review of Scientific Instruments 60, 1579-1587 (1989).
59. M. Wei, D. T. Attwood, T. K. Gustafson, and E. H. Anderson, "Patterning a 50‐nm period grating using soft x‐ray spatial frequency multiplication," Journal of Vacuum Science & Technology B 12, 3648-3652 (1994).
60. H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Applied Physics Letters 75, 2328-2330 (1999).
61. H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Four-wave EUV interference lithography," Microelectronic Engineering 61–62, 77-82 (2002).
62. H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," Journal of Vacuum Science & Technology B 20, 2844-2848 (2002).
63. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, "Sub-50 nm period patterns with EUV interference lithography," Microelectronic Engineering 67-8, 56-62 (2003).
64. H. H. Solak, Y. Ekinci, P. Käser, and S. Park, "Photon-beam lithography reaches 12.5nm half-pitch resolution," Journal of Vacuum Science & Technology B 25, 91-95 (2007).
65. H. H. Solak, "Nanolithography with coherent extreme ultraviolet light," J Phys D Appl Phys 39, R171-R188 (2006).
66. V. Auzelyte, C. Dais, P. Farquet, D. Grutzmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, "Extreme ultraviolet interference lithography at the Paul Scherrer Institut," J. Micro-Nanolithogr. MEMS MOEMS 8, 021204 1-10 (2009).
67. Y. Ekinci, M. Vockenhuber, M. Hojeij, W. Li, and N. Mojarad, "Evaluation of EUV resist performance with interference lithography towards 11 nm half-pitch and beyond," Proc. SPIE 8679, 867910 1-10 (2013).
68. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 2002) ,chap 9,385-431.
69. F. S. Bates, and G. H. Fredrickson, "Block copolymers - Designer soft materials," Phys. Today 52, 32-38 (1999).
70. N. Choksi, D. S. Pickard, M. McCord, R. F. W. Pease, Y. Shroff, Y. J. Chen, W. Oldham, and D. Markle, "Maskless extreme ultraviolet lithography," J. Vac. Sci. Technol. B 17, 3047-3051 (1999).
71. R. A. Bartels, A. Paul, H. Green, H. C. Kapteyn, M. M. Murnane, S. Backus, I. P. Christov, Y. W. Liu, D. Attwood, and C. Jacobsen, "Generation of spatially coherent light at extreme ultraviolet wavelengths," Science 297, 376-378 (2002).
72. V. N. Golovkina, P. F. Nealey, F. Cerrina, J. W. Taylor, H. H. Solak, C. David, and J. Gobrecht, "Exploring the ultimate resolution of positive-tone chemically amplified resists: 26 nm dense lines using extreme ultraviolet interference lithography," J. Vac. Sci. Technol. B 22, 99-103 (2004).
73. S. Park, H. Schift, H. H. Solak, and J. Gobrecht, "Stamps for nanoimprint lithography by extreme ultraviolet interference lithography," J. Vac. Sci. Technol. B 22, 3246-3250 (2004).
74. M. Saidani, and H. H. Solak, "High diffraction-efficiency molybdenum gratings for EUV lithography," Microelectronic Engineering 86, 483-485 (2009).
75. Y. Fukushima, N. Sakagami, T. Kimura, Y. Kamaji, T. Iguchi, Y. Yamaguchi, M. Tada, T. Harada, T. Watanabe, and H. Kinoshita, "Development of Extreme Ultraviolet Interference Lithography System," Japanese Journal of Applied Physics 49, 06GD06 1-5 (2010).
76. S. S. Sarkar, H. H. Solak, J. Raabe, C. David, and J. F. van der Veen, "Fabrication of Fresnel zone plates with 25 nm zone width using extreme ultraviolet holography," Microelectronic Engineering 87, 854-858 (2010).
77. Y. Yamaguchi, Y. Fukushima, T. Harada, T. Watanabe, and H. Kinoshita, "Transmission Grating Fabrication for Replicating Resist Patterns of 20 nm and Below," Japanese Journal of Applied Physics 50,06GB10 1-4(2011).
78. L. Wang, D. Fan, V. A. Guzenko, and Y. Ekinci, "Facile fabrication of high-resolution extreme ultraviolet interference lithography grating masks using footing strategy during electron beam writing," J. Vac. Sci. Technol. B 31,06F602 1-5(2013).
79. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
80. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," J. Vac. Sci. Technol. B 14, 4129-4133 (1996).
81. Y. Hirai, S. Yoshida, and N. Takagi, "Defect analysis in thermal nanoimprint lithography," J. Vac. Sci. Technol. B 21, 2765-2770 (2003).
82. M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, "Fabrication of Nanostructures using a UV-based imprint technique," Microelectronic Engineering 53, 233-236 (2000).
83. M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, and C. G. Willson, "Nanofabrication with step and flash imprint lithography," J. Microlithogr. Microfabr. Microsyst. 4, 11021-11026 (2005).
84. Y. N. Xia, and G. M. Whitesides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998).
85. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, "Improved pattern transfer in soft lithography using composite stamps," Langmuir 18, 5314-5320 (2002).
86. T. T. Truong, R. S. Lin, S. Jeon, H. H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel, and J. A. Rogers, "Soft lithography using acryloxy perfluoropolyether composite stamps," Langmuir 23, 2898-2905 (2007).
87. T. Takahashi, Y. Takasawa, T. Gowa, S. Okubo, T. Sasaki, T. Miura, A. Oshima, S. Tagawa, and M. Washio, "Study on UV/EB Nanoimprint Lithography Using Nano-/Micro-fabricated Crosslinked PTFE Mold," J Photopolym Sci Tec 23, 69-74 (2010).
88. "SU-8: Thick Photo-Resist for MEMS, http://memscyclopedia.org/su8.html."
89. A. Hayek, Y. G. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, and S. Yang, "Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography," J. Mater. Chem. 18, 3316-3318 (2008).
90. "http://www.polymersource.com/dataSheet/P3968-SMMA.pdf," (Polymer Source).
91. "http://polymersource.com/dataSheet/P8238-SDMS.pdf," (Polymer Source).
92. "http://www.polymersource.com/dataSheet/P11117-SOH.pdf," (Polymer Source).
93. "http://www.polymersource.com/dataSheet/P8648-DMSOH.pdf," (Polymer Source).
94. C. H. Lin, H. L. Chen, W. C. Chao, C. I. Hsieh, and W. H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic Engineering 83, 1798-1804 (2006).
95. "Index of Refraction, http://henke.lbl.gov/optical_constants/getdb2.html."
96. J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, "3D Micro- and Nanostructures via Interference Lithography," Advanced Functional Materials 17, 3027-3041 (2007).
97. W. R. Jones, "PROPERTIES OF PERFLUOROPOLYETHERS FOR SPACE APPLICATIONS," Tribol. Trans. 38, 557-564 (1995).
98. Y. F. Song, P. C. Tseng, L. R. Huang, S. C. Chung, T. E. Dann, C. T. Chen, and K. L. Tsang, "Design of an ultra-high resolution and high flux cylindrical grating monochromator undulator beamline," Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 467, 496-499 (2001).
99. Y.-M. Lin, "Extreme ultraviolet interferometric lithography - fabrication of transmission grating by using nanoimprint lithography," master thesis in Department of photonics(National Cheng Kung University, 2011).
100. K. W. Guarini, C. T. Black, and S. H. I. Yeung, "Optimization of Diblock Copolymer Thin Film Self Assembly," Advanced Materials 14, 1290-1294 (2002).
101. J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, and C. J. Hawker, "Block Copolymer Nanolithography: Translation of Molecular Level Control to Nanoscale Patterns," Advanced Materials 21, 4769-4792 (2009).
校內:2019-08-29公開