| 研究生: |
吳政達 Wu, Cheng-Ta |
|---|---|
| 論文名稱: |
運用類神經網路估計新產品擴散模式係數之研究 |
| 指導教授: |
王泰裕
Wang, Tai-Yue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 產品屬性 、倒傳遞網路 、擴散模式 |
| 外文關鍵詞: | product attributes, back propagation networks, diffusion model |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技不斷地創新,新產品從構想、開發到成功上市的時間愈來愈短,而創新的高風險與高失敗率,使得企業在新產品的開發與管理上面臨相當大的挑戰。由於創新的擴散過程受到許多因素的影響,加上擴散係數又會影響預測曲線的形狀,所以相關影響因素與係數估計是決定整個擴散模式預測準確度的主要關鍵。因此本研究之目的是結合產品價格與屬性擴散係數,建立一個運用類神經網路估計新產品擴散模式係數的方法,期望能提供一個適用於企業的新產品擴散模式。本研究引用液晶顯示器作為實證,以產品價格與屬性擴散係數為輸入變數,透過倒傳遞網路的學習能力估計出擴散係數,並與另外二種係數估計方法:以產品屬性為基礎之係數估計方法與非線性最小平方法進行比較分析,並將此三種方法所估計之係數代入 Bass 擴散模式中進行產品銷售量的預測。最後經由實證分析的結果,本研究歸納出以下兩點結論:(1)在預測能力方面,本研究所建構之模式明顯優於以產品屬性為基礎之係數估計方法,並且略優於非線性最小平方法。(2)本研究所建構之模式可以適用於企業的新產品擴散係數估計與銷售量預測。
none
中文部分
葉怡成,2003年,類神經網路模式應用與實作(八版),儒林圖書有限公司
莊孟絃,2003年,估計新產品擴散模式係數之研究,國立成功大學工業管理科學系碩士班碩
士論文
英文部分
Adya, M., F. Collopy. 1998. How Effective are Neural Networks at Forecasting and Prediction? A Review and Evaluation. Journal of Forecasting 17(5-6) 481-495.
Bass, F. M. 1969. A New Product Growth for Model Consumer Durables. Management Science 15(5) 215-227.
Bayus, B. L. 1987. Forecasting Sales of New Contingent Products: An Application to the Compact Disc Market. Journal of Product Innovation Management 4(December) 243-255.
Brown, L. A. 1981. Innovation Diffusion: A New Perspective. Methuen, New York.
Cooper, R. G. 1993. Winning at New Products: Accelerating the Process from Idea to Launch, Second Edition. Addison-Wesley, Massachusetts.
Crawford, C. M., C. A. Di Benedetto. 2000. New Products Management, Sixth Edition. McGraw-Hill, New York.
Danaher, P. J., B. G.S. Hardie, W. P. Putsis Jr. 2001. Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation. Journal of Marketing Research 38(November) 501-514.
Fourt, L. A., J. W. Woodlock. 1960. Early Prediction of Market Success for New Grocery Products. Journal of Marketing 25(October) 31-38.
Gatignon, H., J. Eliashberg, T. S. Robertson. 1989. Modeling Multinational Diffusion Patters: An Efficient Methodology. Marketing Science 8(3) 231-247.
Horsky, D. C. 1990. A Diffusion Model Incorporating Product Benefits, Price, Income and Information. Marketing Science 9(4) 342-365.
Horsky, D. C., L. S. Simon. 1983. Advertising and the Diffusion of New Products. Management Science 29(1) 1-18.
Jain, D. C., R. C. Rao. 1990. Effect of Price on the Demand for Durables: Modeling, Estimation, and Findings. Journal of Business & Economic Statistics 8(2) 163-170.
Jain, D. C., V. Mahajan, E. Muller. 1991. Innovation Diffusion in the Presence of Supply Restrictions. Marketing Science 10(1) 83-90.
Jones, J. M., C. J. Ritz. 1991. Incorporating Distribution into New Product Diffusion Models. International Journal of Research in Marketing 8 91-112.
Kalish, S. 1983. Monopolist Pricing with Dynamic Demand and Production Cost. Marketing Science 2(2) 135-160.
Kalish, S. 1985. A New Product Adoption Model with Price, Advertising, and Uncertainty. Management Science 31(12) 1569-1585.
Kalish, S., G. L. Lilien. 1986. A Market Entry Timing Model for New Technologies. Management Science 32(2) 194-205.
Kamakura, W. A., S. K. Balasubramanian. 1987. Long-Term Forecasting with Innovation Diffusion Models: The Impact of Replacement Purchases. Journal of Forecasting 6 1-19.
Kamakura, W. A., S. K. Balasubramanian. 1988. Long-Term View of the Diffusion of Durables. International Journal of Research in Marketing 5 1-13.
Lenk, P. J., A. G. Rao. 1990. New Models from Old: Forecasting Product Adoption by Hierarchical Bayes Procedures. Marketing Science 9(1) 42-53.
Lilien, G. L., A. G. Rao, S. Kalish. 1981. Bayesian Estimation and Control of Detailing Effort in a Repeat Purchase Diffusion Environment. Management Science 27(5) 493-506.
Mahajan, V., E. Muller. 1996. Timing, Diffusion, and Substitution of Successive Generations of Technological Innovations: The IBM Mainframe Case. Technological Forecasting and Social Change 51 109-132.
Mahajan, V., E. Muller, F. M. Bass. 1990. New Product Diffusion Models in Marketing: A Review and Directions for Research. Journal of Marketing 54(January) 1-26.
Mahajan, V., E. Muller, R. A. Kerin. 1984. Introduction Strategy for New Products with Positive and Negative Word-of-Mouth. Management Science 30(12) 1389-1404.
Mahajan, V., R. A. Peterson. 1978. Innovation Diffusion in a Dynamic Potential Adopter Population. Management Science 24(11) 1589-1597.
Mahajan, V., R. A. Peterson. 1979. Integrating Time and Space in Technological Substitution Models. Technological Forecasting and Social Change 14 231-241.
Maier, F. H. 1998. New Product Diffusion Models in Innovation Management-- A System Dynamics Perspective. System Dynamics Review 14(Winter) 285-308.
Mansfield, E. 1961. Technical Change and the Rate of Imitation. Econometrica 29(4) 741-766.
Midgley, D. F. 1976. A Simple Mathematical Theory of Innovative Behavior. Journal of Consumer Research 3(June) 31-41.
Norton, J. A., F. M. Bass. 1987. A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products. Management Science 33(9) 1069-1086.
Olson, J., S. Choi. 1985. A Product Diffusion Model Incorporating Repeat Purchases. Technological Forecasting and Social Change 27 385-397.
Parker, P. M. 1992. Price Elasticity Dynamics Over the Adoption Life Cycle. Journal of Marketing Research 24(August) 358-367.
Robinson, B., C. Lakhani. 1975. Dynamic Price Models for New-Product Planning. Management Science 21(10) 1113-1122.
Rogers, E. M. 1995. Diffusion of Innovations, Fourth Edition. Free Press, New York.
Schmittlein, D. C., V. Mahajan. 1982. Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance. Marketing Science 1(1) 57-78.
Sharif, M. N., K. Ramanathan. 1981. Binomial Innovation Diffusion Models with Dynamic Potential Adopter Population. Technological Forecasting and Social Change 20 63-87.
Sharif, M. N., K. Ramanathan. 1982. Polynomial Innovation Diffusion Models. Technological Forecasting and Social Change 21 301-323.
Simon, H., K. H. Sebastian. 1987. Diffusion and Advertising: The German Telephone Campaign. Management Science 33(4) 451-466.
Speece, M. W., D. L. MacLachlan. 1992. Forecasting Fluid Milk Package Type with a Multigeneration New Product Diffusion Model. IEEE Transactions on Engineering Management 39(2) 169-175.
Speece, M. W., D. L. MacLachlan. 1995. Application of a Multi-Generation Diffusion Model to Milk Container Technology. Technological Forecasting and Social Change 49 281-295.
Srinivasan, V., C. H. Mason. 1986. Nonlinear Least Squares Estimation of New Product Diffusion Models. Marketing Science 5(2) 169-178.
Srivastava, R. K., V. Mahajan, S. N. Ramaswami, J. Cherian. 1985. A Multi-Attribute Diffusion Model for Forecasting the Adoption of Investment Alternatives for Consumers. Technological Forecasting and Social Change 28 325-333.
Teng, J. T.C., V. Grover, W. Guttler. 2002. Information Technology Innovations: General Diffusion Patterns and Its Relationships to Innovation Characteristics. IEEE Transactions on Engineering Management 49(1) 13-27.
Tornatzky, L. G., K. J. Klein. 1982. Innovation Characteristics and Innovation Adoption-Implementation: A Meta-Analysis of Findings. IEEE Transactions on Engineering Management 29(1) 28-45.
Witold, K., K. Halina. 1996. Long-Term Diffusion Factors of Technological Development: An Evolutionary Model and Case Study. Technological Forecasting and Social Change 52 31-57.