簡易檢索 / 詳目顯示

研究生: 何明穎
Ho, Ming-Ing
論文名稱: 以三維數值模擬及無因次分析直接能量沉積製程
Numerical investigation of laser Directional Energy Deposition by three-dimensional simulations and dimensionless analysis
指導教授: 曾建洲
Tseng, Chien-Chou
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 94
中文關鍵詞: 直接能量沉積計算流體力學流體體積分率法無因次分析表面張力馬倫格尼效應相變化
外文關鍵詞: Direct Energy Deposition (DED), Computation Fluid Dynamics (CFD), Volume of fluid (VOF), Dimensionless analysis, Surface tension, Marangoni effect, Phase change
相關次數: 點閱:131下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以三維數值模擬並搭配無因次參數,對積層製造中的直接能量沉積(Directed Energy Deposition, DED)進行全面的參數分析。首先以計算流體力學(Computation Fluid Dynamics, CFD)進行三維數值模擬,配合流體體積分率法(Volume of fluid, VOF),並考慮表面張力(surface tension)、馬倫格尼效應(Marangoni effect)及粉末效應等物理現象,用於模擬金屬受雷射加工後之相變化(phase change)過程。三維數值模擬和實驗比對後,再以此模型架構,對不同加工參數或材料,進行一系列之數值實驗,並搭配文獻蒐集之實驗結果和無因次分析(dimensionless analysis),找出無因次參數與熔池尺寸之經驗方程式。此經驗方程式有別於一般文獻,僅限於特定材料,並在限定之加工範圍內才可適用之有因次經驗方程式,本研究之方程式參數經過無因次化,故可針對大範圍的加工參數並可推及不同之材料。
    針對數值模擬之結果,發現熔池寬度較不受粉末影響,由經驗方程式中亦可發現,無因次的熔池寬度主要受到無因次雷射能量的主宰,並且在寬度成長至雷射光斑大小之後,成長較為緩慢。無因次熔池高度較為複雜,跟無因次的雷射能量,粉末流量,傅立葉數,以及粉末利用率,皆有關聯。傅立葉數會影響熔池長度,進而改變粉末沉積時間長短。隨著無因次雷射能量增加,若粉末利用率接近百分之百,反將使無因次高先增後減;隨著無因次粉末流量增加,所需克服的潛熱會使得等效之雷射能量降低,使得熔池變短,反而讓無因次高下降。本研究所提供之無因次經驗方程式,對直接能量沉積最終燒結的尺寸可做一全面性的預測,用以提供最佳化設計,並可節省實際製程的成本。

    This study presents a comprehensive investigation for direct energy deposition (DED), including three-dimensional numerical simulations and dimensionless analysis. The Computational Fluid Dynamics (CFD) together with volume of fluid (VOF) method is used to simulate the phase change of metallic material during laser cladding process, which includes the powder effect and interfacial dynamics such as Marangoni and surface tension effects. After validations with measured data, additional numerical experiments and data from previous literatatures have been collected to form emperical equations of sizes of melting pool. In contrast with previous studies that their emperical realtion can only be applied to a confined range of working conditions, the dimensionless empirical equations in this study can largely match the trends of measured data with noticeable variations of working conditions collected from several different literatures.
    The dimensionless width of melting pool is found to less sensitive to the powder flow and dominated by the dimensionless laser energy. When the width grows larger than the laser spot size, the slope of width with respect to the laser energy becomes gentler. The characteristic of dimensionless height is more complex. It is influenced by the dimensionless laser energy and powder flow rate, Fourier number, and catchment efficiency. The Fourier number can change the length of the melting pool, which further influences the duration of powder deposition. When the catchment efficiency is close to unity, further increase of dimensionless laser power could even decrease the dimensionless height. As for excessive dimensionless powder flow rate, the effective laser power is possible to decline due to the larger amount of latent heat for the powder flow. Hence, the dimensionless height could also drop. The dimensionless empirical equations provided in this study can predict the scales of final products comprehensively, benefiting the optimal design and saving cost from the DED process.

    目錄 摘要 II ABSTRACT IV 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 符號說明 XIV 第一章 緒論 1 1.1 DED背景介紹與物理現象 1 1.2 DED重要加工參數分析 3 1.3 DED重要製程燒熔結果 8 1.4 DED模型文獻回顧 10 1.4.1 粉末流模型 10 1.4.2 熔池模型 11 1.5 研究動機與目的 14 第二章 研究方法 15 2.1 數值模擬研究方法 15 2.1.1 粉末流模型 15 2.1.2 多相流模型 21 2.1.3 連續方程式 22 2.1.4 動量方程式 23 2.1.5 能量方程式 25 2.2 無因次參數研究方法 28 2.2.1 焊接無因次參數 28 2.2.2 DED無因次參數 33 第三章 結果與討論 37 3.1 數值模擬設置與驗證 38 3.2 數值模擬之熔池特徵與流場分析 43 3.3 數據蒐集與統計分析方法 48 3.4 DED無因次分析結果與分析 50 3.4.1 熔池寬度 50 3.4.2 熔池高度 57 3.4.3 粉末使用率 62 3.4.4 熔池高度趨勢分析 63 3.5 加工可適用範圍 71 3.6 誤差原因探討 77 第四章 結論與未來展望 79 4.1 結論 79 4.2 未來展望 80 參考文獻 81 附錄 87 三維數值模擬網格測試 87 無因次參數數據 88

    [1] R. M. Mahamood, E. T. Akinlabi, M. Shukla, and S. Pityana, "Revolutionary Additive Manufacturing: An Overview," Lasers in Engineering (Old City Publishing), vol. 27, 2014.
    [2] B. Graf, A. Gumenyuk, and M. Rethmeier, "Laser metal deposition as repair technology for stainless steel and titanium alloys," Physics Procedia, vol. 39, pp. 376-381, 2012.
    [3] Q. Liu, Y. Wang, H. Zheng, K. Tang, H. Li, and S. Gong, "TC17 titanium alloy laser melting deposition repair process and properties," Optics & Laser Technology, vol. 82, pp. 1-9, 2016.
    [4] E. Govekar, A. Jeromen, A. Kuznetsov, M. Kotar, and M. Kondo, "Annular laser beam based direct metal deposition," Procedia Cirp, vol. 74, pp. 222-227, 2018.
    [5] N. Tamanna, R. Crouch, and S. Naher, "Progress in numerical simulation of the laser cladding process," Optics and Lasers in Engineering, vol. 122, pp. 151-163, 2019.
    [6] M. K. Alam, R. J. Urbanic, N. Nazemi, and A. Edrisy, "Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel," The International Journal of Advanced Manufacturing Technology, vol. 94, no. 1, pp. 397-413, 2018.
    [7] N. Sommer, F. Stredak, and S. Böhm, "High-Speed Laser Cladding on Thin-Sheet-Substrates—Influence of Process Parameters on Clad Geometry and Dilution," Coatings, vol. 11, no. 8, p. 952, 2021.
    [8] J. C. Haley, B. Zheng, U. S. Bertoli, A. D. Dupuy, J. M. Schoenung, and E. J. Lavernia, "Working distance passive stability in laser directed energy deposition additive manufacturing," Materials & Design, vol. 161, pp. 86-94, 2019.
    [9] U. De Oliveira, V. Ocelík, and J. T. M. De Hosson, "Analysis of coaxial laser cladding processing conditions," Surface and Coatings Technology, vol. 197, no. 2-3, pp. 127-136, 2005.
    [10] A. J. Pinkerton, "Advances in the modeling of laser direct metal deposition," Journal of laser applications, vol. 27, no. S1, p. S15001, 2015.
    [11] V. Ocelík, U. De Oliveira, M. De Boer, and J. T. M. De Hosson, "Thick Co-based coating on cast iron by side laser cladding: Analysis of processing conditions and coating properties," Surface and Coatings Technology, vol. 201, no. 12, pp. 5875-5883, 2007.
    [12] R. M. Mahamood, E. T. Akinlabi, M. Shukla, and S. L. Pityana, "Material efficiency of laser metal deposited Ti6Al4V: Effect of laser power," 2013.
    [13] M. S. Sawant and N. Jain, "Investigations on wear characteristics of Stellite coating by micro-plasma transferred arc powder deposition process," Wear, vol. 378, pp. 155-164, 2017.
    [14] H. Z. Rajani, S. A. Mousavi, and F. M. Sani, "Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates," Materials & Design, vol. 43, pp. 467-474, 2013.
    [15] T. Yu, L. Yang, Y. Zhao, J. Sun, and B. Li, "Experimental research and multi-response multi-parameter optimization of laser cladding Fe313," Optics & Laser Technology, vol. 108, pp. 321-332, 2018.
    [16] Z. Jardon, J. Ertveldt, M. Hinderdael, and P. Guillaume, "Process parameter study for enhancement of directed energy deposition powder efficiency based on single-track geometry evaluation," Journal of Laser Applications, vol. 33, no. 4, p. 042023, 2021.
    [17] C. Zhong, T. Biermann, A. Gasser, and R. Poprawe, "Experimental study of effects of main process parameters on porosity, track geometry, deposition rate, and powder efficiency for high deposition rate laser metal deposition," Journal of Laser Applications, vol. 27, no. 4, p. 042003, 2015.
    [18] Y. Hu, C. Chen, and K. Mukherjee, "Innovative laser-aided manufacturing of patterned stamping and cutting dies: Processing parameters," MATERIAL AND MANUFACTURING PROCESS, vol. 13, no. 3, pp. 369-387, 1998.
    [19] J. Koch and J. Mazumder, "Rapid prototyping by laser cladding," in International Congress on Applications of Lasers & Electro-Optics, 1993, vol. 1993, no. 1: Laser Institute of America, pp. 556-565.
    [20] W. M. Steen, "Laser surface treatment," in Laser material processing: Springer, 2003, pp. 227-278.
    [21] W. Kurz and D. J. Fisher, Fundamentals of solidification. 1984.
    [22] J. Smugeresky, D. Keicher, J. Romero, M. Griffith, and L. Harwell, "Laser engineered net shaping (LENS {trademark}) process: Optimization of surface finish and microstructural properties," Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 1997.
    [23] J. Mazumder, A. Schifferer, and J. Choi, "Direct materials deposition: designed macro and microstructure," Material Research Innovations, vol. 3, no. 3, pp. 118-131, 1999.
    [24] Y.-J. Chou, Y.-H. Mai, and C.-C. Tseng, "Large-eddy simulation of coaxial powder flow for the laser direct deposition process," Physics of Fluids, vol. 33, no. 12, p. 125121, 2021.
    [25] Z. Gan, G. Yu, X. He, and S. Li, "Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel," International Journal of Heat and Mass Transfer, vol. 104, pp. 28-38, 2017.
    [26] Z. Sun, W. Guo, and L. Li, "Numerical modelling of heat transfer, mass transport and microstructure formation in a high deposition rate laser directed energy deposition process," Additive Manufacturing, vol. 33, p. 101175, 2020.
    [27] Y. Huang, M. B. Khamesee, and E. Toyserkani, "A comprehensive analytical model for laser powder-fed additive manufacturing," Additive Manufacturing, vol. 12, pp. 90-99, 2016.
    [28] H. C. Hulst and H. C. van de Hulst, Light scattering by small particles. Courier Corporation, 1981.
    [29] D. Deirmendjian, "Electromagnetic scattering on spherical polydispersions," Rand Corp Santa Monica CA, 1969.
    [30] D. Bedenko, O. Kovalev, I. Smurov, and A. Zaitsev, "Numerical simulation of transport phenomena, formation the bead and thermal behavior in application to industrial DMD technology," International Journal of Heat and Mass Transfer, vol. 95, pp. 902-912, 2016.
    [31] X. Wang, D. Deng, Y. Hu, Z. Liu, and H. Zhang, "Analytical modeling and experimental investigation of laser clad geometry," Optical Engineering, vol. 56, no. 9, p. 096104, 2017.
    [32] S. Wen and Y. C. Shin, "Modeling of transport phenomena during the coaxial laser direct deposition process," Journal of Applied Physics, vol. 108, no. 4, p. 044908, 2010.
    [33] Y. Lee, M. Nordin, S. Babu, and D. Farson, "Influence of fluid convection on weld pool formation in laser cladding," Weld. J, vol. 93, no. 8, pp. 292-300, 2014.
    [34] J. Zhao, G. Wang, X. Wang, S. Luo, L. Wang, and Y. Rong, "Multicomponent multiphase modeling of dissimilar laser cladding process with high-speed steel on medium carbon steel," International Journal of Heat and Mass Transfer, vol. 148, p. 118990, 2020.
    [35] H. Moosmüller and C. Sorensen, "Single scattering albedo of homogeneous, spherical particles in the transition regime," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 219, pp. 333-338, 2018.
    [36] F. Wirth and K. Wegener, "A physical modeling and predictive simulation of the laser cladding process," Additive Manufacturing, vol. 22, pp. 307-319, 2018.
    [37] J. Berkmanns and M. Faerber, "Laser basics, BOC," ed, 2010.
    [38] M. Picasso, C. Marsden, J. Wagniere, A. Frenk, and M. Rappaz, "A simple but realistic model for laser cladding," Metallurgical and materials transactions B, vol. 25, no. 2, pp. 281-291, 1994.
    [39] T. Hirogaki, H. Nakagawa, M. Hayamizu, Y. Kita, and Y. Kakino, "In-situ heat treatment system for die steels using YAG laser with a machining center," Precision Engineering, vol. 25, no. 3, pp. 212-217, 2001.
    [40] D. Hann, J. Iammi, and J. Folkes, "A simple methodology for predicting laser-weld properties from material and laser parameters," Journal of Physics D: Applied Physics, vol. 44, no. 44, p. 445401, 2011.
    [41] 許庭豪, "以數值方法分析同軸噴嘴之雷射沉積過程," 碩士, 機械工程學系, 國\成功大學, 台南市, 2020. [Online]. Available: https://hdl.handle.net/11296/v972y3
    [42] H. Kurose, D. Miyagi, N. Takahashi, N. Uchida, and K. Kawanaka, "3-D eddy current analysis of induction heating apparatus considering heat emission, heat conduction, and temperature dependence of magnetic characteristics," IEEE Transactions on magnetics, vol. 45, no. 3, pp. 1847-1850, 2009.
    [43] P. Huang, R. Liu, X. Wu, and M. X. Yao, "Effects of molybdenum content and heat treatment on mechanical and tribological properties of a low-carbon Stellite® alloy," 2007.
    [44] J. I. Arrizubieta, A. Lamikiz, F. Klocke, S. Martínez, K. Arntz, and E. Ukar, "Evaluation of the relevance of melt pool dynamics in Laser Material Deposition process modeling," International Journal of Heat and Mass Transfer, vol. 115, pp. 80-91, 2017.
    [45] S.-K. Chien, K.-T. Tsai, Y.-H. Li, Y.-T. Wu, and W.-L. Chen, "A simple and accurate 3D numerical model for laser cladding," Journal of Mechanics, vol. 36, no. 1, pp. 19-33, 2020.
    [46] J. Gao, C. Wu, Y. Hao, X. Xu, and L. Guo, "Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding," Optics & Laser Technology, vol. 129, p. 106287, 2020.
    [47] D. J. Corbin, A. R. Nassar, E. W. Reutzel, A. M. Beese, and N. A. Kistler, "Effect of directed energy deposition processing parameters on laser deposited Inconel® 718: External morphology," Journal of Laser Applications, vol. 29, no. 2, p. 022001, 2017.
    [48] C. Wang, J. Zhou, T. Zhang, X. Meng, P. Li, and S. Huang, "Numerical simulation and solidification characteristics for laser cladding of Inconel 718," Optics & Laser Technology, vol. 149, p. 107843, 2022.
    [49] Song, J., Chew, Y., Bi, G., Yao, X., Zhang, B., Bai, J., & Moon, S. K., "Numerical and experimental study of laser aided additive manufacturing for melt-pool profile and grain orientation analysis," Materials & Design, vol. 137, pp. 286-297, 2018.
    [50] H. Zhao and T. DebRoy, "Weld metal composition change during conduction mode laser welding of aluminum alloy 5182," Metallurgical and materials transactions B, vol. 32, no. 1, pp. 163-172, 2001.
    [51] H. Zhao and T. DebRoy, "Macroporosity free aluminum alloy weldments through numerical simulation of keyhole mode laser welding," Journal of Applied Physics, vol. 93, no. 12, pp. 10089-10096, 2003.
    [52] J. Yan, "Optimal design of process parameters during laser direct metal deposition of multi-material parts," Clemson University, 2016.
    [53] M. Ansari, R. S. Razavi, and M. Barekat, "An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy," Optics & Laser Technology, vol. 86, pp. 136-144, 2016.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE