| 研究生: |
楊博勝 Yang, Bo-Sheng |
|---|---|
| 論文名稱: |
單一黎曼能階的電磁波引發透明研究 Electromagnetically induced transparency in a single Zeeman sublevel |
| 指導教授: |
陳泳帆
Chen, Yong-Fan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 電磁波引發透明 |
| 外文關鍵詞: | EIT |
| 相關次數: | 點閱:65 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討探測光與耦合光皆為π偏振的電磁波引發透明。在冷銣原子的三能階系
統中,若探測光與耦合光皆為π偏振時,會因耦合光有個暗態導致穿透率很低,我
們利用一右旋的幫浦光把居量趕到單一黎曼能階上,可使得穿透率有顯著的提升。
為了觀測都卜勒效應對穿透率的影響,使探測光與耦合光夾90度,並利用實驗得到
的基態同調破壞率推算出冷原子的溫度約為260 μK。
We report experimental observation of electromagnetically induced transparency (EIT) that both probe and coupling fields are π-polarized. The probe field will be absorbed strongly based on the Λ-EIT scheme of cold atomic ensemble of 87Rb due to the absence of the coupling field at one of Zeeman state. We use a pumping light to avoid this problem and restore the high transmission property of EIT. In order to observe the relation with the Doppler effect and transmission, we set the angle of the probe and coupling beams for 90 degrees, and infer the temperature of cold atomic ensemble is approximately 260 μK.
[1] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev.
Lett. 7, 118 (1961).
[2] G. Lenz, P. Meystre, and E. M. Wright, Phys. Rev. Lett. 71, 3271 (1993).
[3] L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S.
Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D.
Phillips, Nature 398, 218 (1999).
[4] S. E. Harris, J. E. Field, and A. Imamoğlu, Phys. Rev. Lett. 64, 1107
(1990).
[5] A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447
(1995).
[6] Q.-F. Chen, Y.-S. Zhang, B.-S. Shi, and G.-C. Guo, Phys. Rev. A 78,
013804 (2008).
[7] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490
(2001).
[8] V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, Phys.
Rev. Lett. 94, 183601 (2005).
[9] S. E. Harris and L. V. Hau, Phys. Rev. Lett. 82, 4611 (1999).
[10] D. C. Burnham and D. L. Weinberg, Phys. Rev. Lett. 25, 84 (1970).
[11] J.-X. Chen, Generation of polariton-entangled photons using Four-wave mixing
in cold atoms, Master’s thesis, NCKU, 2011.
[12] S. D. Jenkins, D. N. Matsukevich, T. Chanelière, A. Kuzmich, and
T. A. B. Kennedy, Phys. Rev. A 73, 021803 (2006).
[13] S.-W. Su, Y.-H. Chen, S.-C. Gou, T.-L. Horng, and I. A. Yu, Phys. Rev.
A 83, 013827 (2011).
[14] C.-Y. Chu, Studies on EIT-based storage at the single-photon level, Master’s
thesis, NCKU, (2013).
[15] Y.-T. Liao, Theoretical studies of phase-dependent double-lambda EIT,
Master’s thesis, NCKU, (2014).
[16] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397,
594 (1999).
[17] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000).
[18] J.-S. W. Y.-W. L. I. A. Y. Thorsten Peters, Yi-Hsin Chen, Opt.
Express (2009).
[19] M.-C. Guo, Quantum Storage of Single Photons, Master’s thesis, NCKU,
(2012).
[20] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys.
Rev. Lett. 55, 48 (1985).
[21] T. P. Meyrath, Electromagnet Design Basics for Cold Atom Experiments,
Technical report, Atom Optics Laboratory Center for Nonlinear Dynamics
University of Texas at Austin, (2004).
[22] D. A. Steck, Rubidium 87 D Line Data, Technical report, available online,
(2008).
[23] C.-K. Chiu, Studies on EIT-based four-wave mixing at low light level, Master’s
thesis, NCKU, (2013).
[24] C.-H. Fang, Studies on oscillation behavior of EIT-based light storage and
retrieval, Master’s thesis, NCKU, (2013).
[25] W. Demtroder, Atoms, Molecules, and Photons, springer, (2005).
[26] D. Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, Phys.
Rev. Lett. 103, 093602 (2009).
[27] B.-H. Wu, Study of transient effects from single-lambda to double-lambda
systems under the all-resonant condition, Master’s thesis, NTHU, 2014.