簡易檢索 / 詳目顯示

研究生: 楊博勝
Yang, Bo-Sheng
論文名稱: 單一黎曼能階的電磁波引發透明研究
Electromagnetically induced transparency in a single Zeeman sublevel
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 65
中文關鍵詞: 電磁波引發透明
外文關鍵詞: EIT
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討探測光與耦合光皆為π偏振的電磁波引發透明。在冷銣原子的三能階系
    統中,若探測光與耦合光皆為π偏振時,會因耦合光有個暗態導致穿透率很低,我
    們利用一右旋的幫浦光把居量趕到單一黎曼能階上,可使得穿透率有顯著的提升。
    為了觀測都卜勒效應對穿透率的影響,使探測光與耦合光夾90度,並利用實驗得到
    的基態同調破壞率推算出冷原子的溫度約為260 μK。

    We report experimental observation of electromagnetically induced transparency (EIT) that both probe and coupling fields are π-polarized. The probe field will be absorbed strongly based on the Λ-EIT scheme of cold atomic ensemble of 87Rb due to the absence of the coupling field at one of Zeeman state. We use a pumping light to avoid this problem and restore the high transmission property of EIT. In order to observe the relation with the Doppler effect and transmission, we set the angle of the probe and coupling beams for 90 degrees, and infer the temperature of cold atomic ensemble is approximately 260 μK.

    1 緒論 6 1.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 實驗動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 電磁波引發透明原理 8 2.1 電磁波引發透明原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 慢光原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 光儲存原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 實驗架設 17 3.1 冷原子系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 磁光陷阱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.2 捕捉原子系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 電磁波引發透明系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.1 頻率系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.2 架設系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 地磁補償. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 實驗結果與討論 25 4.1 σp+σp+ & θc-p = 0.6∘的電磁波引發透明. . . . . . . . . . . . . . . . . . 25 4.1.1 σp+σp+ & θc-p = 0.6∘的EIT 光譜. . . . . . . . . . . . . . . . . 25 4.1.2σp+σp+ & θc-p = 0.6∘的慢光與光儲存實驗. . . . . . . . . . . . 27 4.2 σpπσpπ & θc-p = 0.6∘的電磁波引發透明. . . . . . . . . . . . . . . . . . 30 4.2.1 σpπσpπ & θc-p = 0.6∘的EIT 光譜. . . . . . . . . . . . . . . . . 31 4.2.2 σpπσpπ & θc-p = 0.6∘的慢光與光儲存實驗. . . . . . . . . . . . 34 4.3 σpπσpπ & θc-p = 90∘的電磁波引發透明. . . . . . . . . . . . . . . . . . 39 4.3.1 σpπσpπ & θc-p = 90∘的EIT 光譜. . . . . . . . . . . . . . . . . 39 4.3.2 σpπσpπ & θc-p = 90∘的慢光與光儲存實驗. . . . . . . . . . . . . 41 5 結論與展望 46 Appendices 46 附錄A 46 A 幫浦光對21 的影響 47 A.1 強度改變. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 A.2 作用時間改變. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 附錄B 57 B σpπσpπ & θc-p = 0.6∘的EIT 光譜有無幫浦光比較 57 附錄C 57 C EIT 光譜實驗 61 參考資料 62

    [1] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev.
    Lett. 7, 118 (1961).
    [2] G. Lenz, P. Meystre, and E. M. Wright, Phys. Rev. Lett. 71, 3271 (1993).
    [3] L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S.
    Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D.
    Phillips, Nature 398, 218 (1999).
    [4] S. E. Harris, J. E. Field, and A. Imamoğlu, Phys. Rev. Lett. 64, 1107
    (1990).
    [5] A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447
    (1995).
    [6] Q.-F. Chen, Y.-S. Zhang, B.-S. Shi, and G.-C. Guo, Phys. Rev. A 78,
    013804 (2008).
    [7] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490
    (2001).
    [8] V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, Phys.
    Rev. Lett. 94, 183601 (2005).
    [9] S. E. Harris and L. V. Hau, Phys. Rev. Lett. 82, 4611 (1999).
    [10] D. C. Burnham and D. L. Weinberg, Phys. Rev. Lett. 25, 84 (1970).
    [11] J.-X. Chen, Generation of polariton-entangled photons using Four-wave mixing
    in cold atoms, Master’s thesis, NCKU, 2011.
    [12] S. D. Jenkins, D. N. Matsukevich, T. Chanelière, A. Kuzmich, and
    T. A. B. Kennedy, Phys. Rev. A 73, 021803 (2006).
    [13] S.-W. Su, Y.-H. Chen, S.-C. Gou, T.-L. Horng, and I. A. Yu, Phys. Rev.
    A 83, 013827 (2011).
    [14] C.-Y. Chu, Studies on EIT-based storage at the single-photon level, Master’s
    thesis, NCKU, (2013).
    [15] Y.-T. Liao, Theoretical studies of phase-dependent double-lambda EIT,
    Master’s thesis, NCKU, (2014).
    [16] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397,
    594 (1999).
    [17] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000).
    [18] J.-S. W. Y.-W. L. I. A. Y. Thorsten Peters, Yi-Hsin Chen, Opt.
    Express (2009).
    [19] M.-C. Guo, Quantum Storage of Single Photons, Master’s thesis, NCKU,
    (2012).
    [20] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys.
    Rev. Lett. 55, 48 (1985).
    [21] T. P. Meyrath, Electromagnet Design Basics for Cold Atom Experiments,
    Technical report, Atom Optics Laboratory Center for Nonlinear Dynamics
    University of Texas at Austin, (2004).
    [22] D. A. Steck, Rubidium 87 D Line Data, Technical report, available online,
    (2008).
    [23] C.-K. Chiu, Studies on EIT-based four-wave mixing at low light level, Master’s
    thesis, NCKU, (2013).
    [24] C.-H. Fang, Studies on oscillation behavior of EIT-based light storage and
    retrieval, Master’s thesis, NCKU, (2013).
    [25] W. Demtroder, Atoms, Molecules, and Photons, springer, (2005).
    [26] D. Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, Phys.
    Rev. Lett. 103, 093602 (2009).
    [27] B.-H. Wu, Study of transient effects from single-lambda to double-lambda
    systems under the all-resonant condition, Master’s thesis, NTHU, 2014.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE