| 研究生: |
凌哲明 Ling, Jer-Ming |
|---|---|
| 論文名稱: |
用MeVVA方法佈植二氧化鈦光觸媒於玻璃表面上之研究 Study implantation of the photo-catalyst of titanium oxide on glass surface with MeVVA. |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 金屬蒸氣真空弧 、降解 、光觸媒 |
| 外文關鍵詞: | metal vapor vacuum arc, dissolution, Photo-catalyst |
| 相關次數: | 點閱:124 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
離子佈植方法是物理的技術、其能夠在金屬表面產生一擴散漸進層。金屬蒸氣真空弧技術則是將純金屬離子化至氣態並與反應槽中特殊氣體分子反應,進而轟擊基材。此種表面改質技術可在表面形成數百奈米深的處理層。然而,本研究擬利用金屬蒸氣真空弧技術在鈉玻璃表面上進行改質,藉由鈦金屬離子加速撞擊氧分子而植入玻璃基材中形成光觸媒結構。
由實驗中顯示:經過金屬蒸氣真空弧技術進行表面改質後,透過亞甲基藍測試可以發現其氧化能力約15~20%;透過UV/VIS測試可以發現其穿透率下降約40%;同時,藉由細菌實驗發現明顯的抑菌圈,顯示出其抗菌效果;另一方面,由奈米壓痕試測試看出光觸媒植入深度約為150~200nm,因此,在GIXRD測試中無法得到有效的判讀訊號。
金屬蒸氣真空弧離子佈植技術提供一種新的乾式製程,其優點包括低溫製程、無鍍層技術、無廢液污染等,是ㄧ項具備環保意識的製程。在本研究的製程中,光觸媒的植入可以明顯的看出其對有機物的降解能力,即可達到自潔的效果;另外,可藉由穿透率的下降來達到遮光的效果;同時,配合抗菌性,可以進行房車玻璃及大樓玻璃帷幕的評估。未來,更期望能針對定性測試部分進行更深入的分析,進而能控制其有效結構。
The ion implantation method is a physics technology capable of creating a highly diffuse inner coating on metallic surfaces. The technology of metal vapor vacuum arc on the other hand is the reaction of pure metallic ions in a gaseous state with special gas molecules in a reactor vessel followed by negative impulse bias attack. These two surface enhancement technologies are capable of creating treatment surface depths up to several hundred nanometers depth. This research postulates the utilization of metal vapor vacuum arc technology to effect enhancement of sodium glass surfaces while making use of titanium ions to speed the attack of oxygen molecules thereby implanting a photo catalyst formation on the glass surface.
Laboratory experiments have shown that after surface treatments are effected by metal vapor vacuum arc technologies then oxidation ability is from 15~20% when tested by argon based blue; testing by UV/VIS shows permeability is reduced by 40%, while at the same time germ levels are solidified into masses thereby enhancing germ resistance. Another aspect is pressure crack test shows photo-catalyst are implanted at depth of 150~200nm and so testing by GIXRD results in no findings.
Metal vapor vacuum arc ion implantation technology is a new “dry” process method of which optimized parameters include low temperature, coatless and pollution free, and so this is an environmentally friendly technology. This process of this research, namely photo catalyst implantation, obviously shows the power of dissolving organic elements while reaching a “clean” state; in addition, reduced permeability results in surface luster while at the same time germ levels are reduced. This method may be used on either car or building glass windows for assessment. I hope to do even further focused research in the future in the hope that resultant formations will be even better controlled.
1. E. J. Mlttemeijer, “Materials science forum”, Trans Tech Publications Ltd, pp431-449, 479-495, 1994.
2. George J. Rudzki, “Surface Finishing System”, American Society for Metal, pp.161-169, 1983.
3. Michael Quirk, Julian Serda, “Semiconductor Manufacturing Technology”, Prentice Hall, pp. 152-176, 475-513, 2001.
4. 張俊彥,“半導體元件物理與製作技術”,高立圖書有限公司,pp. 414-507,1999.
5. 李世鴻,“半導體工程原理”,全威圖書有限公司,pp. 244-255, 399-424,1997.
6.張通和,“離子注入表面優化技術”,冶金工業出版社,pp. 1-29, 308-349,1993.
7. 張通和,“離子束材料改性科學和應用”,科學出版社,pp. 1-54, 346-362,1999.
8. J. R. Rose, “工業等離子體工程”,科學出版社,pp. 128-148,1998.
9. J. F. Ziegler, “Handbook of ion implantation technology”, North Holland, pp. 25-64, 1992.
10. Robert F. Hochman, “Ion planting and implantation”, American Society for Metal, pp. 115-123, 1985.
11. Zhang Tonghe, Zhang Huixing, Ji Changzhoua, “Industrialization of MEVVA source ion implantation”, Surface and Coatings Technology, Vol. 128-129, pp. 1-8, 2000. 14. F. Spaepan and D. Turnbull, "Crystalline Process," in Laser Annealing of Semicodncutors, Academic Press, New York, Chap. 2, 1982.
13. K. B. Winterbon, “Ion Implantation Range and Energy Deposition Distributions, Low Energies”, Plenum Press, New York 1975.
14. M. Farley, B. Simonton, in “Ion Implantation Science and Technology”, Ion Implantation Technology Co. Yorktown 1996.
15. H. L. Liu, S. S. Gearhart, J. H. Booske, “Ultra-Shallow P+/N Junctions Formed by Recoil Implantation”, Journal of Electronic Materials, Vol. 27, No.2, pp 1027, 1998.
16. 宋慧娟 等編著,人類與自然科學,五南圖書出版公司印行,2003/09。
17. 陳富亮,最新奈米光觸媒應用技術,普林斯頓國際有限公司,2003/10。
18. Emmanuel Rosencher and Borge Vinter, Optoelectronics, CAMBRIDGE UNIVERSITY PRESS, 2002
19. 呂宗昕,奈米科技與光觸媒,商周出版,2003/10。
20. 光觸媒圖解,張晶 楊健 譯,商周出版,2003/10。
21. 高濂 鄭珊 張青紅 著,納米氧化鈦光催化材料及應用,化學工業出版社,2003/04。
22. 高濂 鄭珊 張青紅 著 陳憲偉 校訂,奈米光觸媒,五南圖書出版公司印行,2004/04。
23. 謝煜弘,電子材料,新文京開發出版有限公司,2003/03
24. 余合興,半導體材料與元件 上、下冊,中央圖書供應社,2000/09。
25. S.O. Kasap, Electronic Materials and Devices / Second Edition, Mc Graw Hill, 2002
26. Y. C. Lee, Y. P. Hong and H. Y. Lee, “Photocatalysis and hydrophilicity of doped TiO2 thin fims”, J. Coll. Interf. Sci., Vol. 267, 127-131, 2003.
27. A. Fujishima, T. N. Rao and D. A. Tryk, “Titanium dioxide photocatalysis”, J. Photochem. Photobiol. C: Photochem. Rev., Vol. 1, 1-21, 2000.
對於降解亞甲基藍發色團過程中的中間產物,可見於Ammar Houas等人[26,27]對亞甲基藍脫色反應的相關文獻,在此不再另作討論。
28. J.I. Steinfeld, J.S. Francisco, W.L. Hase:Chemical Kinetics and Dynamics, 2nd edition, Prentice Hall.
29. B. Neppolian, S. Sakthivel, M. Palanichamy, B. Arabindoo, V. Murugesan, Stud. Sur. Sci. Cat, Vol.113, p 329,1998.
30. A. Houas, H. Lachheb, M. Ksibi, E.Elaloui ,C. Guillard, J.-M. Herrmann, " Photocatalytic degradation pathway of methylene blue in water", Applied Catalysis B: Environ., Vol.31, p145–157, 2001.
31. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi ,E. Elaloui, C. Guillard, J.-M. Herrmann," Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania", Applied Catalysis B: Environ.,Vol.39, p75-90, 2002.
32. A. Sclafani and J. M. Herrmann, “Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions”, J. Phys. Chem., Vol. 100, 13655-13661, 1996.
33. A. Sclafani, L. Palmisano and M. Schiavello, “Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion”, J. Phys. Chem., Vol. 94, pp. 829-832, 1990.
34. F. Hohl, H. Berndt and P. Mayr, “Implantation of N2+, O+ and CO+ ions into titanium and Ti-6Al-4V”, Surf. Coat. Techn., Vol. 74-75, 765-769, 1995.
35. F. Zhang, Z. Zheng and D. Liu, “Synthesis of titanium dioxide films by ion beam enhanced deposition”, Nucl. Instru. Meth. in Phys. Res. B, Vol. 132, 620-626, 1997.
36. T. Hartmann, L.M. Wang and W.J. Weber, “Ion beam radiation damage effects in rutile (TiO2)”, Nucl. Instru. Meth. in Phys. Res. B, Vol. 141, 398-403, 1998.
37. M. Rinner, J. Gerlach and W. Ensinger, “Formation of titanium oxide films on titanium and Ti6Al4V by O2-plasma immersion ion implantation”, Surf. Coat. Techn., Vol. 132, 111-116, 2000.
38. S. Nakao, U. T. Nonami and P. Jin, “High-energy metal ion implantation into titanium dioxide films”, Surf. Coat. Techn., Vol. 128-129, 446-449, 2000.
39. A. Bendavid, P. J. Martin and H. Takikawa, “Deposition and modification of titanium dioxide thin films by filtered arc deposition”, Thin Solid Films, Vol. 360, 241-249, 2000.
40. D. Mardare and G. I. Rusu, “Structural and electrical properties of TiO2 RF sputtered thin films”, Mat. Sci. Eng. B, Vol. 75, 68–71, 2000.
41. S. K. Zheng, T. M. Wang and W. C. Hao, “Improvement of photocatalytic activity of TiO2 thin film by Sn ion implantation”, Vacuum, Vol. 65, 155–159, 2002.
42. S. K. Zheng, T. M. Wang and C. Wang, “Photocatalytic activity study of TiO2 thin films with and without Fe ion implantation”, Nucl. Instru. Meth. in Phys. Res. B, Vol. 187, 479–484, 2002.
43. Y. X. Leng, N. Huang and P. Yang, “Influence of oxygen pressure on the properties and biocompatibility of titanium oxide fabricated by metal plasma ion implantation and deposition”, Thin Solid Films, Vol. 420-421, 408-413, 2002.
44. H. Tsuji, T. Sagimori and K. Kurita, “Surface modification of TiO2 (rutile) by metal negative ion implantation for improving catalytic properties”, Surf. Coat. Techn., Vol. 158-159, 208–213, 2002.
45. H. Tsuji, H. Sugahara and Y. Gotoh, “Improvement of photocatalytic efficiency of rutile titania by silver negative-ion implantation”, Nucl. Instru. Meth. in Phys. Res. B, Vol. 206, 249–253, 2003.
46. T. Yamaki, T. Umebayashi, T. Sumita, “Fluorine-doping in titanium dioxide by ion implantation technique”, Nucl. Instru. Meth. in Phys. Res. B, Vol. 206, 254–258, 2003.