簡易檢索 / 詳目顯示

研究生: 陳英國
Chen, Ying-Guo
論文名稱: 氟化鋰於薄膜電晶體之研究與應用
Lithium Fluoride in Organic Thin Film Transistors applications
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 80
中文關鍵詞: 氟化鋰五環素塑膠基板有機薄膜電晶體透明電晶體聚苯胺
外文關鍵詞: transparent transistor, LiF, pentacene, plastic substrate, OTFT, polyaniline
相關次數: 點閱:116下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本碩論中,我們致力於研究鋰化氟對於五環素薄膜電晶體的影響。在此,氟化鋰用來增加電晶體的載子注入。我們蒸鍍氟化鋰於不同位置中探討其結果。當我們將之成膜於閘極電極與介電層間,發現汲極電流明顯的增加。並且實現此架構於軟性塑膠基板上,而最大飽和電流從7.5µA增加至 22µA。
    其次,高透明有機薄膜電晶體亦成功的製作。在可見光範圍內的平均穿透率高達71.2%。高透明電晶體具有容易與有機發光二極體整合的優點。並藉著蒸鍍氟化鋰來改善電晶體特性,且當氟化鋰厚度為1nm時可達到最大電流。當我們將1nm 氟化鋰成膜於汲極/源極電極時,最大的飽和電流可從1.1µA 增加至 2.58µA。
    此外,我們使用導電高分子—聚苯胺 (polyaniline) 做為電晶體的主動層並藉著摻雜樟腦磺酸(CSA)增進聚苯胺的導電性及其溶解度,另外藉著摻雜-去摻雜的原理來改變聚苯胺的導電度,使之導電性,從半導體範圍到絕緣體範圍,並由此來控制電晶體的開關,達到電晶體特性。

    The effects of thin lithium fluoride (LiF) insulating layer in pentacene-based organic thin film transistors (OTFT) are studied. The LiF thin film has been used improve the efficiency of the carrier injection. The pentacene-based OTFT with inserted LiF thin layer on different positions was fabricated. The performance of drain current is obviously enhanced while LiF is inserted between gate electrode and dielectric layer in OTFTs. Here, we carry out the structure on the plastic substrate, and the maximum saturation current increases from 7.5µA to 22µA.
    Furthermore, highly transparent OTFTs based on pentacene have been demonstrated. The average transmittance is as high as 71.2% in the visible region. Highly transparent OTFTs have the advantage to easily integrate with OLED in display system. By inserting thin LiF film, enhancing the drain current were obtained. The optimum thickness of LiF film (1 nm) to achieve the maximum saturation current is investigated. The maximum saturation current increases from 1.1µA to 2.58µA while we insert 1nm LiF film between ITO (Source/Drain) and pentacene.
    Additionally, we use conducting polymer, polyaniline (PANI), as active layer in the device. The CSA is used to improve electrical conductivity of polyaniline and its solubility. By doping-dedoping, we control of the electrical conductivity from semiconductor to insulator to attain the transistor characteristics.

    Contents Abstract (in English) …………………………………………………………………..I Abstract (in Chinese)………………………………………………………………….III Acknowledgements…………………………………………………………………..IV Contents……………………………………………………………………………...V List of Tables……………………………………VII List of Figures…………………………………………………….VIII Chapter 1 introduction……………………………………………………………….1 1.1 Organic Thin Film Transistors overview…………………………………………..1 1.2 OTFT Operation…………………………………………………………………...2 1.3 Organization ....………...………………………………………………………….5 Chapter 2 The Influence of Lithium Fluoride deposited in OTFTs……………...10 2.1 Introduction………………………………………………………………………10 2.2 Experiment Material………………………………………………..…………….11 2.2.1 Pentacene…………………………………………………………………….11 2.2.2 ITO…………………………………………………………………………..12 2.2.3 PVP…………………………………………………………………………..13 2.2.4 LiF ……………………………………………………………………….....13 2.3 Inserting LiF Layer between Gate Electrode and Dielectric Layer……………...14 2.3.1 Experiment Procedure……………………………………………………….14 2.3.2 Result and Discussion ………………………………………………………16 2.4 Inserting LiF Layer between Dielectric Layer and Active Layer………………..18 2.4.1 Experiment Procedure……………………………………………………….18 2.4.2 Result and Discussion……………………………………………………….20 2.5 Inserting LiF Layer between Active Layer and Electrode……………………….20 2.5.1 Experiment Procedure……………………………………………………….22 2.5.2 Result and Discussion……………………………………………………….24 2.6 Summary…………………………………………………………………………26 Chapter3 Using Polyaniline as Active Layer in Polymer TFTs………………….58 3.1 Introduction………………………………………………………………………58 3.2 Chemical Property………………………………………………………………..59 3.3 Transistor Structure Operation Principle…………………………………………60 3.4 Transistor Fabrication…………………………………………………………….61 3.5 Current-Voltage Characteristic…………………………………………………...63 3.6 Summary…………………………………………………………………………64 Chapter 4 Conclusions……………………………………………………………...71 Chapter 5 Future Work…………………………………………………………….73 References…………………………………………………………………………...74

    [1] M. Pope, C. E. Swenberg, “Electronic Processes in Organic Crystals and Polymers,” 2nd ed., Oxford University Press, Oxford, pp.337-340 (1999)
    [2] D.F. Barbe, C.R.Westgate, “Surface state parameters of metal-free phthalocyanine single crystals, ”J. Phys. Chem. Solids, 31, 2679 (1970)
    [3] M.L.Petrova, L.D. Rozenshtein, and Fiz. Tverd,”Field effect in organic semiconductors,” Tela, Sov. Phys., Solid State, 12, 961 (1970)
    [4] C. W. Tang, S. A. Van Slyke,“Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913 (1987)
    [5] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R.H. Friend, P. L. Burn, A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539 (1990)
    [6] F. Ebisawa, T. Kurokawa, S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” J. Appl. Phys. 54, 3255 (1983)
    [7] K. Kudo, M. Yamashina, T. Moriizumi, “Field Effect Measurement of Organic Dye Films,” Jpn. J. Appl. Phys. 23, 130 (1984)
    [8] A. Tsumura, H. Koezuka, T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phs. Lett. 49, 1210 (1986)
    [9] F. M. Heringdorf, M. C. Reuter, and R. M. Tromp, “Growth dynamics of pentacene thin films,” Nature 412, 517 - 520 (2001)
    [10] S. Forrest, ”Science and Technology at the Nanometer Scale Using Vacuum-Deposited Organic Thin Films,” MRS Bull. 108 (2001)
    [11] S. H. Kim, J. H. Lee, Y. S. Yang, and T. Zyung, “Device fabrications of organic thin-film transistors,” Mol. Cryst. Liq. Cryst.405, 137–152(2003)
    [12] T. Y. Taur, T. H. Ning, “Fundamentals of Modern VLSI Devices,” Cambridge University Press, Cambridge, p.11 (1998)
    [13] V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson ,“Intrinsic Charge Transport on the Surface of Organic Semiconductors,” Phys. ReV. Lett., 93, 086602 (2004)
    [14] G. Horowitz, X. Z. Peng, D. Fichou, F. Garnier, “The oligothiophene-based field-effect transistor: How it works and how to improve It,” J. Appl. Phys. 67, 528
    [15] M. Halik, H. Klauk, U. Zscieschang, G. Shmid, C. Dehm, M. Schutz, S. Maisch, F. Effecberger, M. Brunnbauer, and F. Stellacci, “Low-voltage organic transistors with an amorphous molecular gate dielectric,” Nature, Vol 43, pp 963-966, (2005)
    [16] D. Knipp, R. A. Street, A. Völkel, and J. Ho, “Pentacene thin-film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport,” Journal of Applied Physics, vol.93, 347(2003)
    [17] “Printed Organic and Molecular Electronics,” (Eds:D.Gamota,P.Brazis.K. Kalyanasundaram.J.Zhang). Kluwer Academic.Boston. MA(2004)
    [18] A. Facchetti , M. H. Yoon, and T. J. Marks, “Gate dielectrics for organic field-effect transistors: New opportunities for organic electronics,” Adv. Mater. 17, 1705–1725 (2005)
    [19] C.W. Han, H. S. Shin, J. H. Park, M. K. Han, H. S. Pang, K. Y. Kim, I. J. Chung, S. W. Pyo, D. H. Lee and Y. K. Kim, “ Organic thin film transistors with indium tin oxide bottom electrode, ”Phys. Scr. T126 41–44(2006)
    [20] S. J. Kang, M. Noh, D. S. Park, H. J. Kim, S. Y. Kim, B. W. Koo, I. N. Kang and C. N. Whang, “Geometric Effect of Channel on Device Performance in Pentacene Thin-Film Transistor,” Japanese Journal of Applied Physics Vol. 43, No.11A, pp. 7718-7721(2004)
    [21] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, W. Radlik, “High-mobility organic thin-film transistors based onα,α′-didecyloligothiophenes, “ J. Appl. Phys., Vol. 93, pp. 2977-2981(2003)
    [22] http://en.wikipedia.org/wiki/Pentacene, “Chemical property of pentacene”
    [23] J. C. C. Fan and F. J. Bachner, J. Electrochem. “Properties of Sn-Doped In2O3 Films Prepared by RF Sputtering,” Soc. 122, 1719 (1975)
    [24] Z. W. Pei, Y. R. Chang, and H. L. Whang, “ White electroluminescence from hydrogenated amorphous-SiNx thin films,” Appl. Phys. Lett. 80, 2839 (2002)
    [25] T. Sano, Y. Hamada, and K. Shibata, “Energy-Band Schemes of Highly Stable Organic Electroluminescent Devices,” IEEE J. Selected Topics in Quantum Electronics.4, 34(1998)
    [26] http://en.wikipedia.org/wiki/LiF , “Chemical property of LiF”
    [27] F. Zhu, B. Low, K. Zhang, S. Chua,” Lithium–fluoride-modified indium tin oxide anode for enhanced carrier injection in phenyl-substituted polymer electroluminescent devices,” Appl. Phys. Lett. 79, 1205 (2001)
    [28] S. J. Kang, D. S. Park, S. Y. Kim, C. N. Whang, K. Jeong, S. Im,” Enhancing the electroluminescent properties of organic light-emitting devices using a thin NaCl layer,” Appl. Phys. Lett. 81, 2581(2002)
    [29] D. S. Park , I. S. Jeong , C. Y. Kim , W. C. Jang , K. Jeong , K. H. Yoo , C. N. Whang , Y. S. Lee , S. O. Kim, “The influence of thin insulating lithium fluoride inserted pentacene layer on pentacene-based organic thin-film transistor,” Thin Solid Films 495 ,385 – 388 (2006)
    [30] W. J. Kim, W. H. Koo, S. J. Jo, C. S. Kim, H. K. Baik, D. K. Hwang, K. Lee, J. H. Kim, and S. Imb, “Ultraviolet-Enduring Performance of Flexible Pentacene TFTs with SnO2 Encapsulation Films,” Electrochemical and Solid-State Letters, 9 (7) G251-G253 (2006)
    [31] K. Tsukagoshi, J. Tanabe, I. Yagi, K. Shigeto, and K. Yanagisawa, Y. Aoyagi, “Organic light-emitting diode driven by organic thin film transistor on plastic substrates,” J. Appl. Phys 99, 064506 (2006)
    [32] S. H. Lee and D. J. Choo, S. H. Han, J. H. Kim, Y. R. Son, and J. Jang, “High performance organic thin-film transistors with photopatterned gate dielectric,” Appl. Phys. Lett. 90, 033502 (2007)
    [33] D. K. Hwang, J-M. Choi, J. H. Park, J. H. Kim, E. Kim, and S. Im, “Low-Voltage Pentacene Thin-Film Transistor with a Polymer/YOx/Polymer Triple-Layer Dielectric on a Plastic Substrate,” Electrochemical and Solid-State Letters, 10 (4)117(2007)
    [34] C. Wang, L. Fang, G. Zhang, D. M. Zhuang, and M. S. Wu, “I–V characteristics of tantalum oxide film and the effect of defects on its electrical properties,” Thin Solid Films, 458, 246 (2004)
    [35] K. Ueno, S. Abe, R. Onoki, and K. Saiki, “Anodization of electrolytically polished Ta surfaces for enhancement of carrier injection into organic field-effect transistors,” J. Appl. Phys., 98, 114503(2005)
    [36] F. Zhu, B. Low, K. Zhang, and S. Chua, “Lithium fluoride modified indium tin oxide anode for enhanced carrier injection in phenyl-substituted polymer electroluminescent devices,” Appl. Phys. Lett 79, 1205 (2001)
    [37] Z. B. Deng, X. M. Ding, S. T. Lee, and W. A. Gambling, “Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers,” Appl. Phys. Lett.74, 2227 (1999)
    [38] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Jr. “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Appl. Phys. Lett. 82, 1117 (2003)
    [39] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” J. Appl. Phys. 93, 1624 (2003)
    [40] R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett. 82, 733 (2003)
    [41] F. C. Chen, Y. S. Lin, T. H. Chen, and L. J. Kung, “Efficient Hole-Injection in Highly Transparent Organic Thin-Film Transistors,” Electrochemical and Solid-State Letters, 10 (6) H186-H188 (2007)
    [42] J.-M. Choi, D. K. Hwang, J. H. Kim, and S. Im, “Transparent thin-film transistors with pentacene channel, AlOx gate, and NiOx electrodes,” Appl. Phys. Lett., 86, 123505 (2005)
    [43] J. Lee, D. K. Hwang, J.-M. Choi, K. Lee, J. H. Kim, S. Im, J. H. Park, and E. Kim, “Flexible semitransparent pentacene thin-film transistors with polymer dielectric layers and NiOx electrodes,” Appl. Phys. Lett., 87, 023504 (2005)
    [44] J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhong, Z. J. Wang, X. M. Ding, W. Huang, and X. Y. Hou, “ Dual role of LiF as a hole-injection buffer in organic light-emitting diodes,” Appl. Phys. Lett. 84, 15 (2004)
    [45] Y. Zhao, S. Y. Liu, and J. Y. Hou, “Comparison of monolayer films of stearic acid and methyl stearate on an Al2O3 surface,” Thin Solid Films 397, 208 (2001)
    [46] F. Garnier, R. Hajlaoui, A. E. Kassmi, G. Horowitz, L. Laigre, W. Porzio, M. Armanini and F. Provasoli, “Dihexylquaterthiophene, A Two-Dimensional Liquid Crystal-like Organic Semiconductor with High Transport Properties,” Chem. Mater.10, 3334.(1998)
    [47] R. D. McCullough, “The Chemistry of Conducting Polythiophenes,” Adv. Mater. 10, 93 (1998)
    [48] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran,W. Wu, E.P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science 290 2123 (2000)
    [49] J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, “Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors,” J. AM. CHEM. SOC. 125, 314-315 (2003)
    [50] Y. J. Lin,Y. C. Li, C. C. Yeh, S. F. Chung, L. M. Huang, T. H. Wen, Y. H. Wang, “Organic thin film transistor by using polymer electrolyte to modulate the conductivity of conjugated polymer,” Appl. Phys. Lett.,89, 223518 (2006)

    下載圖示 校內:2008-08-09公開
    校外:2008-08-09公開
    QR CODE