| 研究生: |
莊智仙 Chuang, Chih-Hsien |
|---|---|
| 論文名稱: |
合成強力黴素衍生物並測試其抑制口腔鱗狀細胞癌之基質金屬蛋白酶活性 Synthesis of doxycycline analog and examine its anti-matrix-metalloproteinases activities in oral squamous cell carcinoma |
| 指導教授: |
蕭世裕
Shaw, Shyh-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 四環黴素衍生物 、氟化藥物 、基質金屬蛋白酶 |
| 外文關鍵詞: | doxycycline, fluorinate, matrix metalloproteinase-9 |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
文獻中報導,親電子性基團可能可以增強四環黴素的抑作制用。而氟是親脂性原子,它具有一些特色,例如: (1)很強的電負度,使之可以穩定化合物上容易被降解的地方並避免產生代謝產物。因為某些代謝物可能具有細胞毒性,並可能會使藥物無效。另一個特徵是氟的大小與氫相似,因此我們的化合物在大小上不會被改變很多。由於氟化藥物具有很多優勢,因此在本研究中,我們嘗試使用F-TEDA-BF4在四環黴素衍生物4-demethylaminodoxycycline(CMT-8)上修飾上氟,然後利用HPLC,MS,NMR進行分析鑑定,接著使用HPLC純化,並利用明膠酶譜分析法(gelatin zymography)來分析此四環黴素衍生物抑制基質金屬蛋白酶的效果,最後採用MTT檢測此強力黴素衍生物的細胞毒性。在這項研究中,我們成功地將CMT-8 C4氟化,但由於在合成的機制上,會有酮-烯醇互變異構,使它存在表異構物。但好消息是它的細胞毒性很低,所以我們目前不考慮表異構物的問題。而在抑制基質金屬蛋白酶-9上,此化合物的效果不是很好,其最大抑制濃度的一半約為80 µg / ml,而先前本實驗室合成之CMT-8約為2.5µg / ml,DOX約為10µg / ml,因此CMT- 8仍然是這些藥物中抑制MMP-9表達最好的藥物。
Literature have reported that the lipophilicity a electron-donating group may enhance the inhibitory effect of tetracycline. Fluorine is a lipophilicity atom and it has some characteristic, such as it’s strong electronegativity which can stabilize the chemical not to be degraded into metabolite. Some metabolite may be cytotoxicity, and it may cause the medicine ineffective. The other characteristic is the size of fluorine is similar with hydrogen, so our compound may not change a lots of it’s size. Due to a lots of advantage of fluorine pharmaceutical, in this studies, we try to modify the doxycycline analog 4-dedimethylaminodoxycycline (CMT-8) by incorporating fluorine into it , using F-TEDA-BF4 of the fluorine sourse, and analysis the effect of this fluorinate inhibiting the matrix metalloproteinase by gelatin zymography, finally use MTT assay to test the cytotoxicity of doxycycline fluorinated analogs. In this study, we successfully synthesied CMT-8 fluorinated analogs on CMT-8 C4, which show an enantiomers. Although the existence of an enantiomers, it’s shows low cytotoxicity. However, the effect of inhibiting matrix metalloproteinase-9 is not very effective, it’s half maximal inhibitory concentration is about 80 µg/ml, 4-dedimethylaminodoxycycline (CMT-8) is about 2.5µg/ml and DOX is about 10µg/ml, so CMT-8 is still the most significant inhibitor of MMP-9 expression in these drugs.
1. 107年國人死因統計結果. 107 [cited 109-03-02.
2. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2018. 68(6): p. 394-424.
3. Duggar, B.M., AUREOMYCIN: A PRODUCT OF THE CONTINUING SEARCH FOR NEW ANTIBIOTICS. Annals of the New York Academy of Sciences, 1948. 51(2): p. 177-181.
4. Golub, L.M., et al., Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med, 1991. 2(3): p. 297-321.
5. Chopra, I. and M. Roberts, Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiology and Molecular Biology Reviews, 2001. 65(2): p. 232-260.
6. Chopra, I., P.M. Hawkey, and M. Hinton, Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother, 1992. 29(3): p. 245-77.
7. Fuoco, D., Classification Framework and Chemical Biology of Tetracycline-Structure-Based Drugs. Antibiotics (Basel, Switzerland), 2012. 1(1): p. 1-13.
8. Golub, L.M., et al., Minocycline reduces gingival collagenolytic activity during diabetes. Journal of Periodontal Research, 1983. 18(5): p. 516-526.
9. Jung, J. and T. Keller, United States (12) Patent Application Publication (10) Pub. No.: US, 2012. 310126: p. A1.
10. Moazed, D. and H.F. Noller, Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 1987. 327(6121): p. 389-94.
11. Ramamurthy, N., E. Zebrowski, and L. Golub, The effect of alloxan diabetes on gingival collagen metabolism in rats. Archives of oral biology, 1972. 17(11): p. 1551-1560.
12. Griffin, M.O., et al., Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol, 2010. 299(3): p. C539-48.
13. Fujita, H., et al., Effects of doxycycline on production of growth factors and matrix metalloproteinases in pulmonary fibrosis. Respiration, 2011. 81(5): p. 420-30.
14. Shen, L.C., et al., Anti-invasion and anti-tumor growth effect of doxycycline treatment for human oral squamous-cell carcinoma--in vitro and in vivo studies. Oral Oncol, 2010. 46(3): p. 178-84.
15. 陳和儒 and H.-R. Chen, 四環黴素類藥物抑制基質金屬蛋白酶表現和癌細胞生長研究.
16. Swamy, D.N., et al., Chemically modified tetracyclines: The novel host modulating agents. Journal of Indian Society of Periodontology, 2015. 19(4): p. 370.
17. Seftor, R.E., et al., Chemically modified tetracyclines inhibit human melanoma cell invasion and metastasis. Clinical & experimental metastasis, 1998. 16(3): p. 217-225.
18. Sawhney, A., Chemically Modified Tetracyclines. Periodontology and Dental Implantology, 2019: p. 89.
19. Chang, K., et al., Tetracyclines inhibit Porphyromonas gingivalis‐induced alveolar bone loss in rats by a non‐antimicrobial mechanism. Journal of periodontal research, 1994. 29(4): p. 242-249.
20. Levy, S.B., et al., Tetracycline compounds having target therapeutic activities. 2018, Google Patents.
21. Lokeshwar, B.L., E. Escatel, and B. Zhu, Cytotoxic activity and inhibition of tumor cell invasion by derivatives of a chemically modified tetracycline CMT-3 (COL-3). Current medicinal chemistry, 2001. 8(3): p. 271-279.
22. Lee, M., et al., CMT-3, a non-antimicrobial tetracycline (TC), inhibits MT1-MMP activity: relevance to cancer. Current medicinal chemistry, 2001. 8(3): p. 257-260.
23. Tolomeo, M., et al., Effects of chemically modified tetracyclines (CMTs) in sensitive, multidrug resistant and apoptosis resistant leukaemia cell lines. British journal of pharmacology, 2001. 133(2): p. 306-314.
24. Syed, S., et al., A phase I and pharmacokinetic study of Col-3 (Metastat), an oral tetracycline derivative with potent matrix metalloproteinase and antitumor properties. Clinical cancer research, 2004. 10(19): p. 6512-6521.
25. Marais, J., Monofluoroacetic acid, the toxic principle of" gifblaar", Dichapetalum cymosum (Hook) Engl. 1944.
26. Böhm, H.-J., et al., Fluorine in Medicinal Chemistry. ChemBioChem, 2004. 5(5): p. 637-643.
27. Isanbor, C. and D. O’Hagan, Fluorine in medicinal chemistry: A review of anti-cancer agents. Journal of Fluorine Chemistry, 2006. 127(3): p. 303-319.
28. Sun, S. and A. Adejare, Fluorinated molecules as drugs and imaging agents in the CNS. Current topics in medicinal chemistry, 2006. 6(14): p. 1457-1464.
29. Purser, S., et al., Fluorine in medicinal chemistry. Chemical Society Reviews, 2008. 37(2): p. 320-330.
30. Fried, J., et al., Synthesis of 10, 10-difluorothromboxane A2, a potent and chemically stable thromboxane agonist. Journal of the American Chemical Society, 1989. 111(12): p. 4510-4511.
31. Liehr, J.G., 2-Fluoroestradiol. Separation of estrogenicity from carcinogenicity. Molecular Pharmacology, 1983. 23(2): p. 278-281.
32. Kim, C.-Y., et al., Contribution of fluorine to protein− ligand affinity in the binding of fluoroaromatic inhibitors to carbonic anhydrase II. Journal of the American Chemical Society, 2000. 122(49): p. 12125-12134.
33. Abeles, R. and T.A. Alston, Enzyme inhibition by fluoro compounds. Journal of Biological Chemistry, 1990. 265(28): p. 16705-16708.
34. Warnakulasuriya, S., G. Sutherland, and C. Scully, Tobacco, oral cancer, and treatment of dependence. Oral Oncol, 2005. 41(3): p. 244-60.
35. Choi, S. and J.N. Myers, Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res, 2008. 87(1): p. 14-32.
36. Purposes and Principles of Staging, in AJCC Cancer Staging Manual, F.L. Greene, et al., Editors. 2002, Springer New York: New York, NY. p. 3-8.
37. Spiro, R.H., et al., Predictive value of tumor thickness in squamous carcinoma confined to the tongue and floor of the mouth. Am J Surg, 1986. 152(4): p. 345-50.
38. Couch, F.J., et al., BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. New England Journal of Medicine, 1997. 336(20): p. 1409-1415.
39. Vineis, P. and K. Husgafvel-Pursiainen, Air pollution and cancer: biomarker studies in human populations †. Carcinogenesis, 2005. 26(11): p. 1846-1855.
40. Luzzi, K.J., et al., Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. The American journal of pathology, 1998. 153(3): p. 865-873.
41. Maitra, A., Molecular envoys pave the way for pancreatic cancer to invade the liver. 2019, Nature Publishing Group.
42. Massagué, J. and A.C. Obenauf, Metastatic colonization by circulating tumour cells. Nature, 2016. 529(7586): p. 298-306.
43. Steeg, P.S., Tumor metastasis: mechanistic insights and clinical challenges. Nature medicine, 2006. 12(8): p. 895-904.
44. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. cell, 2011. 144(5): p. 646-674.
45. John, A. and G. Tuszynski, The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathology oncology research, 2001. 7(1): p. 14.
46. Beaudeux, J.-L., et al., Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives. Clinical Chemistry and Laboratory Medicine (CCLM), 2004. 42(2): p. 121-131.
47. Chaudhary, A.K., et al., Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck. Journal of biomedical science, 2010. 17(1): p. 10.
48. Tamam, M., et al., Differentiated thyroid carcinoma in children: Clinical characteristics and long-term follow-up. Journal of Cancer Research and Therapeutics, 2016. 12(1): p. 28-35.
49. Vu, T.H. and Z. Werb, Matrix metalloproteinases: effectors of development and normal physiology. Genes & development, 2000. 14(17): p. 2123-2133.
50. Fanjul-Fernández, M., et al., Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2010. 1803(1): p. 3-19.
51. Brew, K., D. Dinakarpandian, and H. Nagase, Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 2000. 1477(1-2): p. 267-283.
52. Gialeli, C., A.D. Theocharis, and N.K. Karamanos, Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. The FEBS journal, 2011. 278(1): p. 16-27.
53. 關景明. 基質金屬蛋白酶與其抑製劑在消化道腫瘤中的研究進展. WCJD 2004 2004-08-30 [cited 12 11]; 2674-2678].
54. Roberts, A.B., et al., New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proceedings of the National Academy of Sciences, 1981. 78(9): p. 5339-5343.
55. Zhang, Y., et al., Receptor-associated Mad homologues synergize as effectors of the TGF-β response. Nature, 1996. 383(6596): p. 168-172.
56. Massagué, J. and F. Weis-Garcia, Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. Cancer surveys, 1996. 27: p. 41-64.
57. Xie, H., et al., Infiltrated pre-adipocytes increase prostate cancer metastasis via modulation of the miR-301a/androgen receptor (AR)/TGF-β1/Smad/MMP9 signals. Oncotarget, 2015. 6(14): p. 12326.
58. Lei, H., et al., The effects of genistein on transforming growth factor-β1-induced invasion and metastasis in human pancreatic cancer cell line Panc-1in vitro. Chinese medical journal, 2012. 125(11): p. 2032-2040.
59. Sun, L., et al., Transforming growth factor-β1 promotes matrix metalloproteinase-9–mediated oral cancer invasion through snail expression. Molecular Cancer Research, 2008. 6(1): p. 10-20.
60. Wiercinska, E., et al., The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast cancer research and treatment, 2011. 128(3): p. 657-666.
61. Frangogiannis, N.G., Transforming growth factor–β in tissue fibrosis. Journal of Experimental Medicine, 2020. 217(3).
62. Sapkota, G., et al., Dephosphorylation of the Linker Regions of Smad1 and Smad2/3 by Small C-terminal Domain Phosphatases Has Distinct Outcomes for Bone Morphogenetic Protein and Transforming Growth Factor-β Pathways. Journal of Biological Chemistry, 2006. 281(52): p. 40412-40419.
63. Chen, X., M.J. Rubock, and M. Whitman, A transcriptional partner for MAD proteins in TGF-β signalling. Nature, 1996. 383(6602): p. 691-696.
64. Nakao, A., et al., TGF-β receptor-mediated signalling through Smad2, Smad3 and Smad4. The EMBO Journal, 1997. 16(17): p. 5353-5362.
65. Akhurst, R.J. and A. Hata, Targeting the TGFβ signalling pathway in disease. Nature Reviews Drug Discovery, 2012. 11(10): p. 790-811.
66. 莊啟祥, 分子軌域與密度泛函數理論計算, in 化學系. 2004, 國立中興大學: 台中市. p. 272.
67. Huang, L., et al., Study on the kinetics of keto-enol tautomerism of p-hydroxyphenylpyruvic acid using capillary electrophoresis. Journal of Chromatography A, 2007. 1175(2): p. 283-288.
68. Fang, Y., H. Zhai, and Y. Zho, Determination of multi‐residue tetracyclines and their metabolites in milk by high performance liquid chromatography‐tandem mass spectrometry. Agilent Technologies Application Note, 2009.
69. Blanchflower, W.J., et al., Confirmatory assay for the determination of tetracyline, oxytetracycline, chlortetracycline and its isomers in muscle and kidney using liquid chromatography-mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 1997. 692(2): p. 351-360.
70. McCormick, J., et al., Studies of the reversible epimerization occurring in the tetracycline family. The preparation, properties and proof of structure of some 4-epi-tetracyclines. Journal of the American Chemical Society, 1957. 79(11): p. 2849-2858.
71. Nelson, M., W. Hillen, and R.A. Greenwald, Tetracyclines in biology, chemistry and medicine. 2012: Birkhäuser.
72. Singh, P., J. Wig, and R. Srinivasan, The Smad family and its role in pancreatic cancer. Indian Journal of Cancer, 2011. 48(3): p. 351-360.
73. NuMegaLab. Fluorine NMR. NuMega Resonance Labs Fast Reliable Services.
校內:2025-07-28公開