| 研究生: |
李卓諺 Lee, Cho-Yen |
|---|---|
| 論文名稱: |
以反應式磁控濺鍍法製備TiNxOy多層膜於太陽能選擇性吸收塗層之應用 Reactive magnetron sputter-deposited TiNxOy multilayers for use as solar selective coatings |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 反應式磁控濺鍍 、選擇性吸收塗層 、高溫熱處理 、表面電漿子共振 |
| 外文關鍵詞: | TiNxOy, solar selective coatings, reactive magnetron sputtering, anti-reflection layer, multilayer coatings |
| 相關次數: | 點閱:119 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為使用反應式磁控濺鍍法,製備一系列不同性質的TiNxOy薄膜,在使用單一金屬鈦靶材下,透過不同的製程參數我們可以得到元素組成比、薄膜結晶度截然不同的TiNxOy膜層,以適當的條件堆疊三層膜結構後,搭配SiO2表面抗反射層的添加,以期能藉由此多層選擇性吸收塗層達到符合經濟效益的高太陽能吸收率與低熱放射率,並希望在高溫(400~800°C)的情況下能繼續維持其高效能。因此我們也對膜層進行不同溫度條件的高溫熱處理,探討其結構與性能受溫度影響的程度。
本論文結果與討論分為二大部分,第一部份主要是探討不同製程參數對濺鍍單層TiNxOy薄膜的影響,找出其適當的參數組合後再進行不同溫度的熱處理,分析與比較其結果。首先我們以X光光電子能譜儀(XPS)分析試片表面的化學元素組成,發現在雙反應氣體(N2+O2)濺鍍下我們的薄膜氧含量普遍都偏高,而在只通入氮氣作為反應氣體時,卻可以穩定的鍍出具不同氮氧比例之TiNxOy薄膜。X光繞射儀(XRD)則用來分析薄膜的結晶結構,結果顯示大部分的薄膜都有TiN繞射峰的存在,且其優選方向會因濺射粒子能量以及薄膜組成而有所改變。在場發射掃描式顯微鏡(FE-SEM)的觀察下,薄膜在不同製程條件下呈現截然不同的表面形貌,且隨著薄膜氮含量的增加,薄膜由顆粒狀非晶結構漸漸轉變為明顯柱狀晶結構。在薄膜光學性質的分析上,我們透過紫外光/可見光/近紅外光分光光譜儀(UV/vis/NIR Spectrometer)量測其穿透率以及反射率,並透過公式得到薄膜吸收度及消光係數等資訊,發現大部分的試片表現出自由載子的吸收效應,是為TiN顆粒表面電漿子共振所造成的影響。而在經過熱處理後的TiNxOy及TiNx膜皆有程度不一的氧化現象發生,因此其光學性質與結晶結構產生明顯的變化。
第二部分則是將決定好的膜層以SS substrate / TiNx / TiNxOy / N-doped TiO2 / SiO2的方式堆疊,透過分光光譜儀與傅立葉轉換紅外光光譜儀(FTIR)量測與計算多層膜的太陽能吸收率以及熱放射率,結果顯示TiNx層可以有效的降低基板放射率,為紅外光反射層;TiNxOy層大幅提高了吸收率,作為主要吸收層;N-doped TiO2層與SiO2層則更進一步的降低膜層整體的介面反射率。而多層膜在經過退火測試後,各膜層介面已明顯有擴散的發生,且結晶結構也因為高溫氧化而產生改變,其中在800°C下,膜層表面還出現嚴重的劣化,導致其光學上的表現大幅衰退。
In this work, a series of TiNxOy films have been investigated for used as solar selective absorbers due to their remarkable optical, mechanical, and electronic properties. The films were deposited using a reactive magnetron sputtering technique. A pure titanium target was used and the deposition took place under different processing parameters. The obtained TiNxOy was then coated with an anti-reflection layer, consisting of metal or non-metal oxides with desirable refractive index. The TiNxOy films and the resulting multilayer coatings were analyzed for the material characteristics. Effects of the material characteristics on the optical performance is presented and discussed.
1. 薛春木, HfO2-x薄膜之結構與光學性質暨其應用於高溫HfO2-x/W/HfO2-x/W多層太陽能選擇性吸收膜之研究. 國立成功大學, 2016.
2. Y. Tian, and C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 2013. 104: p. 538-553.
3. 藍詠翔, 瓷金結構a-C:H/Pt用於選擇性太陽吸收膜之研究. 國立成功大學, 2009.
4. N. Selvakumar, and H.C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications. Solar Energy Materials and Solar Cells, 2012. 98: p. 1-23.
5. K. Valleti, D. Murali Krishna, and S.V. Joshi, Functional multi-layer nitride coatings for high temperature solar selective applications. Solar Energy Materials and Solar Cells, 2014. 121: p. 14-21.
6. 史月艳, 那鴻悅, 《太阳光谱选择性吸收膜系设计、制备及测评》. 清华大学, 2009.
7. http://klimat.czn.uj.edu.pl/enid/0,59a8eb73686f7774797065092d097072696e74/Climate_Change_classes_ss/ss_Energy_from_the_Sun_6ev.html.
8. M. Fox, Optical Propertes of Solids. 2001.
9. B. Jervey , The World's Largest Concentrated Solar Plant Is Coming to California. 2011.
10. J. Moon, et al., High performance multi-scaled nanostructured spectrally selective coating for concentrating solar power. Nano Energy, 2014. 8: p. 238-246.
11. C.G. Granqvist, Spectrally selective surfaces for heating and cooling applications. SPIE Opt. Engr. Press 1989.
12. T. STEPHEN SATHIARAJ, R.T., H. AL SHARBATY*, M. BHATNAGAR AND O. P. and AGNIHOTRI, Ni-Al2O3 SELECTIVE CERMET COATINGS FOR PHOTOTHERMAL CONVERSION UP TO 500 °C. Thin Solid Films, 1990. 190: p. 241-254.
13. Q.-C. Zhang, Stainless-steel–AlN cermet selective surfaces deposited by direct current magnetron sputtering technology. Solar Energy Materials and Solar Cells, 1998. 52: p. 95-106.
14. S. Esposito, et al., Fabrication and optimisation of highly efficient cermet-based spectrally selective coatings for high operating temperature. Thin Solid Films, 2009. 517.
15. Gururaj V. Naik, et al., Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. OPTICAL MATERIALS EXPRESS, 2012. 2: p. 478-489.
16. 楊浚揮, 以物理氣相沉積法通入空氣/氬氣製備TiN薄膜. 國立中山大學, 2007.
17. P. Patsalas, and S. Logothetidis, Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films. Journal of Applied Physics, 2001. 90(9): p. 4725-4734.
18. L.E. Toth, Transition Metal Carbides and Nitrides. Academic Press, 1971.
19. A.V. Emeline, et al., Visible-Light-Active Titania Photocatalysts: The Case of N-DopedTiO2s—Properties and Some Fundamental Issues. International Journal of Photoenergy, 2008. 2008: p. 1-19.
20. 周灵平, et al., TiO2薄膜折射率的调控方法. Journal of Hunan University(Natural Sciences), 2011. 38.
21. 詹慕萱, 濺鍍法中以空氣作為反應性氣體製備氮化鈦、氮氧化鈦與氮摻雜二氧化鈦薄膜及其特性研究. 國立中興大學, 2010.
22. F. Vaz, et al., Structural, optical and mechanical properties of coloured TiNxOy thin films. Thin Solid Films, 2004. 447-448: p. 449-454.
23. P.G. Wu, C.H. Ma, and J.K. Shang, Effects of nitrogen doping on optical properties of TiO2 thin films. Applied Physics A, 2005. 81(7): p. 1411-1417.
24. S.H. Mohamed, et al., Influence of nitrogen content on properties of direct current sputtered TiOxNy films. physica status solidi (a), 2004. 201(1): p. 90-102.
25. F. Chen, et al., High performance colored selective absorbers for architecturally integrated solar applications. J. Mater. Chem. A, 2015. 3(14): p. 7353-7360.
26. F. Chen, et al., Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings. Optical Materials Express, 2014. 4(9): p. 1833.
27. J. Zhang, et al., Investigation of localized surface plasmon resonance of TiN nanoparticles in TiN_xO_y thin films. Optical Materials Express, 2016. 6(7): p. 2422.
28. J. Zhang, et al., Modeling of a selective solar absorber thin film structure based on double TiNxOy layers for concentrated solar power applications. Solar Energy, 2017. 142: p. 33-38.
29. J. Zhang, et al., Design of a High Performance Selective Solar Absorber with the Structure of SiO2-TiO2-TiNxOy-Cu. ECS Journal of Solid State Science and Technology, 2016. 5: p. 43-47.
30. G. He, et al., Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping. Journal of Physics D: Applied Physics, 2008. 41(4): p. 045304 (9pp).
31. V. Stranak, et al., Effect of nitrogen doping on TiOxNy thin film formation at reactive high-power pulsed magnetron sputtering. Journal of Physics D: Applied Physics, 2010. 43(28): p. 285203 (7pp).
32. A. Trenczek-Zajac, et al., Structural and electrical properties of magnetron sputtered Ti(ON) thin films: The case of TiN doped in situ with oxygen. Journal of Power Sources, 2009. 194(1): p. 93-103.
33. D. Heřman, J. Šícha, and J. Musil, Magnetron sputtering of TiOxNy films. Vacuum, 2006. 81(3): p. 285-290.
34. N. Delegan, et al., Bandgap tailoring of in-situ nitrogen-doped TiO2 sputtered films intended for electrophotocatalytic applications under solar light. Journal of Applied Physics, 2014. 116(15): p. 153510-1-153510-8.
35. B.W., N. Savvides, Charged particle fluxes from planar magnetron sputtering sources. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986. 4.
36. 赵嘉学, 等离子体发射监控系统参与的中频孪生反应磁控溅射沉积TiO2薄膜的实验研究(1). 真空技术网.
37. B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching. John Wiley, 1980.
38. J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. 666-670.
39. S. Zhao, and E. Wackelgard, Optimization of solar absorbing three-layer coatings. Solar Energy Materials and Solar Cells, 2006. 90(3): p. 243-261.
40. S. Chattopadhyay, et al., Anti-reflecting and photonic nanostructures. Materials Science and Engineering: R: Reports, 2010. 69(1-3): p. 1-35.
41. 蕭為元, 抗反射膜在顯示技術與太陽能吸收之研究. 國立中央大學, 2010.
42. 田大昌 and 黃啟貞, 場發射式歐傑電子顯微鏡(AES)/微區表面化學電子能譜儀(ESCA)之簡介. 工業材料雜誌 2003: p. 81-89.
43. 楊慧德, 物理冶金學(含材料科學)-八版-. 鼎茂圖書出版股份有限公司, 2012.
44. 林麗娟, X光繞射原理及其應用. 工業材料86期, 1994: p. 100-109.
45. 羅聖全, 科學基礎研究之重要利器—掃瞄式電子顯微鏡(SEM). 科學研習, 2013.
46. http://www.tohokaken-cat.jp/analysis.html.
47. http://cmnst.ncku.edu.tw/ezfiles/23/1023/img/1759/tem2100.htm.
48. F. Vaz, , et al., Preparation of magnetron sputtered TiNxOy thin films. Surface and Coatings Technology, 2003. 174-175: p. 197-203.
49. M. Radecka, et al., Chemical composition, crystallographic structure and impedance spectroscopy of titanium oxynitride TiNxOy thin films. Solid State Ionics, 2011. 192(1): p. 693-698.
50. Y.L. Jeyachandran, et al., Properties of titanium nitride films prepared by direct current magnetron sputtering. Materials Science and Engineering: A, 2007. 445-446: p. 223-236.
51. I.M. Ismail, et al., XPS and RBS investigation of TiNxOy films prepared by vacuum arc discharge. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012. 271: p. 102-106.
52. https://srdata.nist.gov/xps/selEnergyType.aspx.
53. 許瓊文, 碳氮共摻雜之次微米球珠特性以及其在可橈式染料敏化太陽能電池之應用. 國立成功大學, 2012.
54. Christophe Rousselot and N. Martin, Influence of two reactive gases on the instabilities of the reactive sputtering process. Surface and Coatings Technology, 2001. 142-144: p. 206-210.
55. N.C. Saha, H.G. Tompkins, Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. Appl. Phys., 1992. 72: p. 3072-3079.
56. S. Paul Bagus*, F.I., Gianfranco Pacchioni , Fulvio Parmigiani, Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding. Journal of Electron Spectroscopy and Related Phenomena, 1999. 100: p. 215-236.
57. 張立信, 表面化學分析技術. Nano communication, 2012. 19.
58. JOSHUA PELLEG, L.Z.Z.A.S.L., REACTIVE-SPUTTER-DEPOSITED TIN FILMS ON GLASS SUBSTRATES. Thin Solid Films, 1991. 197: p. 117-128.
59. R.-J. Xie, H.T. Bert Hintzen, and D. Johnson, Optical Properties of (Oxy)Nitride Materials: A Review. Journal of the American Ceramic Society, 2013. 96(3): p. 665-687.
60. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, Optical Properties and Plasmonic Performance of Titanium Nitride. Materials, 2015. 8(6): p. 3128-3154.
61. P.E. Schmid, M. Sato Sunaga, and F. Lévy, Optical and electronic properties of sputtered TiNx thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1998. 16(5): p. 2870-2875.
62. M. OSTLING, S.N.A.C.S.P., H. NORSTROM AND R. BUCHTA, and H.-O.B.A.S. BERG, A COMPARATIVE STUDY OF THE DIFFUSION BARRIER PROPERTIES OF TiN AND ZrN. Thin Solid Films, 1986. 145: p. 81-88.
63. S.-D. Mo, and W.Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B, 1995. 51(19): p. 13023-13032.
64. D. M. Trotter, Jr., and A. J. Sievers, Spectral selectivity of high-temperature solar absorbers. APPLIED OPTICS, 1980. 19: p. 711-728.