簡易檢索 / 詳目顯示

研究生: 林國欽
Lin, Kuo-Chin
論文名稱: 表面修飾及功能性包覆之硒化鎘/硫化鋅奈米量子點穩定性研究
Stability Evaluation of Surface Modification and Polymer Encapsulation of CdSe/ZnS Quantum Dots
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 123
中文關鍵詞: 穩定性奈米量子點胞飲作用功能性包覆親水性修飾
外文關鍵詞: Quantum dots (QDs), hydrophilic, encapsulate, stability, pinocytosis
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於探討表面修飾及功能性包覆之硒化鎘/硫化鋅奈米量子點穩定性研究。實驗主要可分為三大方向:1、奈米量子點之製備、表面修飾及功能性包覆,首先利用化學氧化還原法合成有機相硒化鎘/硫化鋅(CdSe/ZnS)奈米量子點,接著對其表面進行親水性修飾或以高分子材料對其進行功能性包覆。2、奈米量子點穩定性的探討,實驗中藉由改變不同的溶媒、濃度、溫度、光照條件及pH值等環境控制參數,評估奈米量子點在修飾及包覆後於不同環境變因下的穩定性。3、利用於胞飲作用的生物相容性評估,實驗中分別將經表面親水性修飾及高分子材料功能性包覆的奈米量子點利用胞飲作用送入老鼠心肌細胞(H9c2 cell line),並進一步比較兩者在細胞內的表現與差異性。偵測上則利用紫外光-可見光分光光譜儀、螢光光譜儀、螢光顯微鏡以及穿透式電子顯微鏡來對不同的奈米量子點進行定性及定量分析之比較。

    研究重要成果歸類如下:首先在製程方面,藉由適當的改變製程參數,可以有效對高分子材料包覆奈米量子點的粒徑加以控制。由穩定性實驗的結果可得知奈米量子點在不同溶媒、濃度、溫度、光照條件及pH值的穩定性,可作為其後利用於細胞實驗環境的參考。首先藉由溶媒穩定性研究可發現,當利用丙酮及甲醇作為有機相奈米量子點儲存的溶媒時,奈米量子點的螢光強度在八小時內沒有衰減的情形。在濃度穩定性的研究中則發現,奈米量子點具有其最佳的濃度範圍,在有機相奈米量子點為5-10 mg/mL,而親水性奈米量子點為0.5-1 mg/mL。從溫度穩定性研究得知在4C-44C之間的溫度對奈米量子點的穩定性無重大影響。而在不同的光照條件方面,有機相奈米量子點在紫外光下曝照兩個小時,以及親水性奈米量子點曝照八個小時,都會造成嚴重的螢光淬滅效應。在pH值穩定性研究中發現,親水性奈米量子點在pH值小於7及大於10的環境下不穩定,而高分子材料包覆奈米量子點的穩定性則不受pH值的影響。最後在細胞實驗中發現,高分子材料功能性包覆奈米量子點比表面親水性修飾的奈米量子點更容易藉由胞飲作用進入細胞內,適合應用於生醫領域中作為細胞即時影像觀測。本研究的相關成果,將有助於在奈米量子點的研究上提供基礎的貢獻。

    This thesis mainly focused on probing into the stability of the surface modification and polymer encapsulation of CdSe/ZnS quantum dots (QDs). The experiment was mainly divided into three parts: 1. QDs fabrication: First, we used the oxidation-reduction method to compound the CdSe/ZnS(core/shell) QDs. Second, we processed the hydrophilic modification with the QDs surface. Finally, we use the polymer material to encapsulate the QDs. 2. Discussing with the stability of QDs: We treated the different parameters to the QDs, such as various solvent, concentration, temperature, exposure, and pH value. We tried to evaluate the stability of the QDs in the different environment. 3. Biocompatible of the cell pinocytosis: We delivered the two different surface modification kinds of QDs to the H9c2 cell line and then compare with the phenomenon and difference in the cell. We have analyzed the qualitative and quantitative of the various QDs by UV-Vis spectrometer、fluorescence spectrometer、microscope and transmission electron microscope.

    This research could be induced the following results: Firstly, in our fabrication process. We could control the particle size of QDs-loaded polymer by changing the formulation parameters. Furthermore, after probing into the stability of QDs, we could find that the acetone and methanol are the better solvents for QDs. The optimum concentration range of QDs in acetone was 5-10 mg/mL, and which of hydrophilic QDs was 0.5-1 mg/mL. The temperature had no apparent effect on QDs. When organic QDs were exposed to UV light for 2 hours or hydrophilic QDs for 8 hours will result in fluorescent quenching. The hydrophilic QDs were not stable in which pH value less than 7 or over than 10. Horever, the stability of QDs-loaded polymer was not effected by pH value. Finally, we found that the QDs-loaded polymer could be delivered into the cell more easily than which hydrophilic modification. Therefore, it was suitable for applying in bio-medical research area. By this study we could understand the stability and suitable reserving environment of QDs in various parameters and these would be used for advanced research.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1 硒化鎘奈米量子點發展與演進 3 1-2-2 奈米量子點表面修飾與生物分子功能性接合 7 1-3 研究動機與目的 13 1-4 奈米量子點光學理論 15 1-4-1 奈米量子點的光學性質 15 1-4-2 量子侷限效應(quantum confinement effect) 17 1-4-3 螢光量子效率(quantum yield) 19 1-4-4 斯托克位移(stokes shift) 19 1-4-5 奈米量子點與有機染劑的比較 20 1-5 細胞對巨分子與顆粒物的運輸 27 1-5-1 細胞膜特性與運輸方式 27 1-5-2 吞噬作用(endocytosis) 30 1-5-3 胞吐作用(exocytosis) 33 1-6 表面修飾及功能性包覆材料 34 第二章 實驗設計及實驗方法 36 2-1 實驗架構 36 2-2 奈米量子點合成 39 2-2-1 有機相奈米量子點合成 39 2-2-2 MUA親水性修飾 45 2-2-3 高分子材料PLGA包覆奈米量子點 47 2-3 穩定性評估實驗 49 2-4 胞飲作用晶片製作 53 2-4-1 晶片構造設計 53 2-4-2 細胞反應區封裝 55 2-5 細胞培養與胞飲作用實驗方法 57 2-6 螢光顯微鏡偵測系統 60 2-7 穿透式電子顯微鏡偵測原理 61 2-8 紫外光-可見光分光光譜儀 64 2-9 螢光光譜儀 67 2-10 雷射奈米粒徑暨界面電位量測儀 69 第三章 結果與討論 71 3-1 奈米量子點合成 71 3-1-1 硒化鎘/硫化鋅奈米量子點合成機制之探討 71 3-1-2 PLGA包覆奈米量子點粒徑操控 73 3-1-3 奈米量子點物化特性 75 3-1-3-1 奈米量子點在螢光顯微鏡下的表現 75 3-1-3-2 奈米量子點的吸收及螢光光譜 79 3-1-3-3 奈米量子點的電子顯微鏡分析 84 3-2 奈米量子點穩定性探討 87 3-2-1 有機相奈米量子點在不同溶媒中的時間穩定性評估 87 3-2-2 不同濃度對奈米量子點穩定性的影響 88 3-2-3 不同溫度對奈米量子點穩定性的影響 92 3-2-4 不同光照條件對奈米量子點穩定性的影響 94 3-2-5 不同pH值對奈米量子點穩定性的影響 98 3-3 親水性修飾及功能性包覆奈米量子點於細胞作用之比較 101 3-3-1 應用親水性奈米量子點於胞飲作用之觀察 101 3-3-2 應用PLGA包覆奈米量子點於胞飲作用之觀察 103 3-4 親水性修飾與PLGA包覆奈米量子點之比較 105 第四章 結論與建議 107 4-1 結論 107 4-2 建議 110 參考文獻 111 附錄 121

    [1] L. C. Venema, J. W. G. Wildoer, J. W. Janssen, S. J. Tans, H. L. J. T. Tuinstra, L. P. Kouwenhoven and C. Dekker, “Imaging electron wave functions of quantized energy levels in carbon nanotubes,” Science, 283, 52, 1999.
    [2] C. B. Murray, D. J. Norris and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE(E=S,Se,Te) semiconductor nanocrystallites,” Journal of the American Chemical Society, 115, 8706, 1993.
    [3] D. V. Talapin, A. L. Rogach, I. Mekis, S. Haubold, A. Kornowski, M. Haase and H. Weller, “Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals,” Colloids and Surfaces A-Physicochemical and Engineering Aspects, 202, 145, 2002.
    [4] S. L. Cumberland, K. M. Hanif, A. Javier, G. A. Khitrov, G. F. Strouse, S. M. Woessner and C. S. Yun, “Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials,” Chemistry of Materials, 14, 1576, 2002.
    [5] E. Rabani, “Structure and electrostatic properties of passivated CdSe nanocrystals,” Journal of Chemical Physics, 115, 1493, 2001.
    [6] Z. A. Peng and X. G. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” Journal of the American Chemical Society, 123, 183, 2001.
    [7] Z. A. Peng and X. G. Peng, “Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth,” Journal of the American Chemical Society, 124, 3343, 2002.
    [8] L. H. Qu, Z. A. Peng and X. G. Peng, “Alternative routes toward high quality CdSe nanocrystals,” Nano Letters, 1, 333, 2001.
    [9] L. H. Qu and X. G. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” Journal of the American Chemical Socity, 124, 2049, 2002.
    [10] A. Mews, A. Eychmuller, M. Giersig, D. Schooss and H. Weller, “Preparation, characterization, and photophysics of the quantum dot quantum well system CdS/HgS/CdS,” Journal of Physical Chemistry, 98, 934, 1994.
    [11] D. Schooss, A. Mews, A. Eychmuller and H. Weller, “Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment,” Physical Review B, 49, 17072, 1994.
    [12] Y. Ebenstein, T. Mokari and U. Banin, “Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy,” Applied Physics Letters, 80, 4033, 2002.
    [13] M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” Journal of Physical Chemistry, 100, 468, 1996.
    [14] X. G. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” Journal of the American Chemical Society, 119, 7019, 1997.
    [15] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites,” Journal of Physical Chemistry B, 101, 9463, 1997.
    [16] I. Mekis, D. V. Talapin, A. Kornowski, M. Haase and H. Weller, “One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and "greener" chemical approaches,” Journal of Physical Chemistry B, 107, 7454, 2003.
    [17] I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nature Materials, 4, 435, 2005.
    [18] W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, 281, 2016, 1998.
    [19] H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec and M. G. Bawendi, “Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein,” Journal of the American Chemical Society, 122, 12142, 2000.
    [20] G. P. Mitchell, C. A. Mirkin and R. L. Letsinger, “Programmed assembly of DNA functionalized quantum dots,” Journal of the American Chemical Society, 121, 8122, 1999.
    [21] E. R. Goldman, E. D. Balighian, H. Mattoussi, M. K. Kuno, J. M. Mauro, P. T. Tran and G. P. Anderson, “Avidin: A natural bridge for quantum dot-antibody conjugates,” Journal of the American Chemical Society, 124, 6378, 2002.
    [22] H. T. Uyeda, I. L. Medintz, J. K. Jaiswal, S. M. Simon and H. Mattoussi, “Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores,” Journal of the American Chemical Society, 127, 3870, 2005.
    [23] M. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, 281, 2013, 1998.
    [24] D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” Journal of Physical Chemistry B, 105, 8861, 2001.
    [25] B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science, 298, 1759, 2002.
    [26] X. Y. Wu, H. J. Liu, J. Q. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. F. Ge, F. Peale and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nature Biotechnology, 21, 41, 2003.
    [27] T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Radler, G. Natile and W. J. Parak, “Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals,” Nano Letters, 4, 703, 2004.
    [28] F. Osaki, T. Kanamori, S. Sando, T. Sera and Y. Aoyama, “A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region,” Journal of the American Chemical Society, 126, 6520, 2004.
    [29] L. C. Mattheakis, J. M. Dias, Y. J. Choi, J. Gong, M. P. Bruchez, J. Q. Liu and E. Wang, “Optical coding of mammalian cells using semiconductor quantum dots,” Analytical Biochemistry, 327, 200, 2004.
    [30] B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez and A. S. Waggoner, “Noninvasive imaging of quantum dots in mice,” Bioconjugate Chemistry, 15, 79, 2004.
    [31] X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nature Biotechnology, 22, 969, 2004.
    [32] A. Sukhanova, M. Devy, L. Venteo, H. Kaplan, M. Artemyev, V. Oleinikov, D. Kilnov, M. Pluot, J. H. M. Cohen and I. Nabiev, “Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells,” Analytical Biochemistry, 324, 60, 2004.
    [33] J. Aldana, Y. A. Wang and X. G. Peng, “Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols,” Journal of the American Chemical Society, 123, 8844, 2001.
    [34] W. C. W. Chan, D. J. Maxwell, X. H. Gao, R. E. Bailey, M. Y. Han and S. M. Nie, “Luminescent quantum dots for multiplexed biological detection and imaging,” Current Opinion in Biotechnology, 13, 40, 2002.
    [35] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science, 290, 314, 2000.
    [36] B. O. Dabbousi, M. G. Bawendi, O. Onitsuka and M. F. Rubner, “Electroluminescence from CdSe quantum-dot polymer composites,” Applied Physics Letters, 66, 1316, 1995.
    [37] C. J. Wang, M. Shim and P. Guyot-Sionnest, “Electrochromic nanocrystal quantum dots,” Science, 291, 2390, 2001.
    [38] S. Coe, W. K. Woo, M. Bawendi and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature, 420, 800, 2002.
    [39] M. Y. Han, X. H. Gao, J. Z. Su and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nature Biotechnology, 19, 631, 2001.
    [40] J. K. Jaiswal, H. Mattoussi, J. M. Mauro and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nature Biotechnology, 21, 47, 2003.
    [41] M. Dahan, T. Laurence, F. Pinaud, D. S. Chemla, A. P. Alivisatos, M. Sauer and S. Weiss, “Time-gated biological imaging by use of colloidal quantum dots,” Optics Letters, 26, 825, 2001.
    [42] D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman and T. M. Jovin, “Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction,” Nature Biotechnology, 22, 198, 2004.
    [43] X. H. Gao and S. M. Nie, “Molecular profiling of single cells and tissue specimens with quantum dots,” TRENDS in Biotechnology, 21, 371, 2003.
    [44] X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos and S. Weiss, “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling,” Single Molecules, 2, 261, 2001.
    [45] S. Pathak, S. K. Choi, N. Arnheim and M. E. Thompson, “Hydroxylated quantum dots as luminescent probes for in situ hybridization,” Journal of the American Chemical Society, 123, 4103, 2001.
    [46] A. Hoshino, K. Hanaki, K. Suzuki and K. Yamamoto, “Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body,” Biochemical and Biophysical Research Communications, 314, 46, 2004.
    [47] M. E. Akerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia and E. Ruoslahti, “Nanocrystal targeting in vivo,” Proceedings of the National Academy of Sciences of the United States of America, 99, 12617, 2002.
    [48] A. M. Smith and S. M. Nie, “Chemical analysis and cellular imaging with quantum dots,” Analyst, 129, 672, 2004.
    [49] F. Hatami, M. Grundmann, N. N. Ledentsov, F. Heinrichsdorff, R. Heitz, J. Bohrer, D. Bimberg, S. S. Ruvimov, P. Werner, V. M. Ustinov, P. S. Kop’ev and Z. I. Alferov, “Carrier dynamics in type-II GaSb/GaAs quantum dots,” Physical Review B, 57, 4635, 1998.
    [50] S. Kim, B. Fisher, H. J. Eisler and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures,” Journal of the American Chemical Society, 125, 11466, 2003.
    [51] S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nature Biotechnology, 22, 93, 2004.
    [52] Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Molecular Imaging, 2, 50, 2003.
    [53] J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Current Opinion in Chemical Biology, 7, 626, 2003.
    [54] Molecular probes - Qdot nanocrystals, http://www.qdots.com, 2006.
    [55] Chembytes e-zine - A quantum paintbox, http://www.chemsoc.org/ chembytes/ezine/2003/cox_sep03.htm, 2003.
    [56] J. Georges, N. Arnaud and L. Parise, “Limitations arising from optical saturation in fluorescence and thermal lens spectrometries using pulsed laser excitation: Application to the determination of the fluorescence quantum yield of rhodamine 6G,” Applied Spectroscopy, 50, 1505, 1996.
    [57] The cell membrane, http://sun.menloschool.org/~cweaver/cells/c/ cell_membrane, 2006.
    [58] Lecture notes for cell biology, http://www.anselm.edu/homepage/ jpitocch/genbio/exoendocyt.JPG, 2001.
    [59] Membranes - How things get in and out of cells, http://fig.cox.miami.edu/~cmallery/150/memb/fig8x18b.jpg, 2005.
    [60] PGCC anatomy and physiology II online - Lymphatic/immune system, http://academic.pgcc.edu/~aimholtz/AandP/206_ONLINE/ Immune/nonspecificimmune.html, 2001.
    [61] Membranes - How things get in and out of cells, http://fig.cox.miami.edu/~cmallery/150/memb/fig8x18c.jpg, 2005.
    [62] 11-Mercaptoundecanoic acid, http://www.sigmaaldrich.com/ catalog/search/ProductDetail/ALDRICH/450561, 2006.
    [63] G. Z. Zhu, S. R. Mallery and S. P. Schwendeman, “Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide),” Nature Biotechnology, 18, 52, 2000.
    [64] Polymer characterization projects - Polymer, composites and spectroscopy (PCAS), http://www.shu.ac.uk/research/meri/pcas/ poly_project_two/poly_projects2.html, 2006.
    [65] 周必泰,懸浮性II-VI族化合物半導體奈米粒子之合成與鑑定,博士論文,國立台灣大學化學研究所,民國92年。
    [66] C. B. Murray, C. R. Kagan and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annual Review of Materials Science, 30, 545, 2000.
    [67] 李元煌,應用奈米量子點於細胞觀測之研究,碩士論文,國立成功大學工程科學研究所,民國92年。
    [68] Sylgard(R) 184 silicone elastomer kit, http://www.dowcorning.com/applications/product_finder/pf_details.asp?l1=009&pg=00000029&prod=01064291&type=PROD, 2006.
    [69] List of mirror units and applicable excitations - Applications of fluorescence microscopy, http://microscope.olympus.com/ga/ applications/Fluo_Applications_E/fa_p26_E.html, 2006.
    [70] 郭懿純,生物電子顯微鏡學,國科會精密儀器中心,民國八十年。
    [71] Beer-Lambert law - Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Beer-Lambert_law, 2006.
    [72] W. W. Yu and X. G. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers,” Angewandte Chemie-International Edition, 41, 2368, 2002.
    [73] W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell and A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology, 14, R15, 2003.

    下載圖示 校內:2016-08-04公開
    校外:2016-08-04公開
    QR CODE