| 研究生: |
張景翔 Chang, Ching-Hsiang |
|---|---|
| 論文名稱: |
評估不同超音波Nakagami-m參數估算器之效能表現與可信程度 Performance and Reliability Assessment for Nakagami-m Parameter Estimators |
| 指導教授: |
王士豪
Wang, Shyh-Hau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 超音波 、Nakagami分布 、Nakagami參數 、最大似然估算器 、矩基礎估算器 |
| 外文關鍵詞: | ultrasound, Nakagami distribution, Nakagami-m parameter, maximum-likelihood estimator, moment-based estimator |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Nakagami分佈是用於估計描述組織超音波逆散射訊號之統計性質的有效方法。不同的估算器可能會影響Nakagami參數在檢測逆散射訊號統計的預測差異。通常最大似然估算器(MLE)是用於估計逆散射訊號之Nakagami參數的主要方法。本研究調查了八個估算器對Nakagami參數估計預測之性能和可靠性。本研究將使用電腦模擬和假體實驗產生超音波逆散射訊號。試驗中的四個變量(散射子濃度、假體大小、對數壓縮和雜訊影響)將是影響實驗中兩個評估(性能評估和可靠性評估)的條件。性能評估包括執行時間、參數差異和相對標準差(RSD),可靠性評估包括柯爾莫諾夫-斯米爾諾夫檢驗(KS檢驗)、決定係數和p值。藉由使用八個估算器來估計超音波逆訊號之Nakagami參數並進行評估。實驗表明Cheng-Beaulieu (CB)估算器和Greenwood-Durand (GD)估算器與其他估算器相比允許更可靠的Nakagami參數估算。在假體寬度3倍脈衝長度時,CB估算器和GD估算器執行時間為63.2μs而MLE執行時間為CB和GD估算器之2020倍。在假體寬度3倍脈衝長度且散射子濃度128 scatterers/mm^2時,CB估算器擁有最小KS-test值0.0191而GD估算器之KS-test值為0.0202。模擬實驗中,所需的假體大小之寬度和對數壓縮動態範圍被建議為7倍脈衝長度和8位元動態範圍。在假體驗證實驗中,估計器之間的差異與模擬實驗相同,假體大小之寬度和對數壓縮動態範圍被建議為3倍脈衝長度和8位元動態範圍。因此,建議將CB估算器和GD估算器作為用於改進基於Nakagami分布對超音波組織特徵表現方法之估算器。
The Nakagami distribution is a valuable tool to estimate the statistics of ultrasound backscattered signals for tissue description. Different estimators may impact the prediction of Nakagami-m parameter in the detection of difference in backscattered statistics. In general, maximum likelihood estimator (MLE) is the principal method applicate to estimate the Nakagami parameters of ultrasound signals. This study investigate the performance and reliability of eight estimators on Nakagami parameter estimations. Ultrasound backscattered signals were generated using a simulation model, and phantom experiments. Four variables, scatterer concentration, phantom size, logarithmic compression and noise effect, will be the conditions of experiment and two assessments, performance assessment and reliability assessment, will be performed by ultrasound backscattered signals. Performance assessment includes execution time, Nakagami-m parameter difference and relative standard deviation (RSD), and reliability assessment includes Kolmogorov–Smirnov test (KS test), R-squared and p-value. Ultrasound signals were utilized to estimate the Nakagami-m parameters by using eight estimators for comparisons. The experiment demonstrated that Cheng-Beaulieu estimator (m_CB) and Greenwood-Durand estimator (m_GD) allowed more trustworthy Nakagami-m estimations compared with other estimators.m_CB and m_GD execute estimation for 63.2 μs and the execution time of MLE estimation is 2020 times m_CB and m_GD’s execution time while window width is 3 times pulse length. m_CB has the least KS-test value as 0.0191 and m_GD has KS-test value as 0.0202 while window width is 3 times pulse length and concentration is 128 scatterers/mm^2. In addition, the required phantom area’s width of the envelope signal and dynamic range of logarithmic compression are suggested as 7 times pulse length and 8-bits. In phantom verification experiment, the difference between estimators are same as in simulation experiment and the required phantom area’s width of the envelope signal and dynamic range of logarithmic compression are suggested as 3 times pulse length and 8-bits. Therefore, m_CB and m_GD are suggested as estimators for the improvement of Nakagami-based methodologies for ultrasound tissue characterization.
[1] K. K. Shung and G. A. Thieme, Ultrasonic scattering in biological tissues: CRC Press, 1992.
[2] G. Stetten, A. Cois, W. Chang, D. Shelton, R. Tamburo, J. Castellucci, et al., "C-mode real time tomographic reflection for a matrix array ultrasound sonic flashlight," in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003, ed: Springer, 2003, pp. 336–343.
[3] D. D. Adler, P. L. Carson, J. M. Rubin, and D. Quinn-Reid, "Doppler ultrasound color flow imaging in the study of breast cancer: preliminary findings," Ultrasound in medicine & biology, vol. 16, pp. 553–559, 1990.
[4] A. Fenster, D. B. Downey, and H. N. Cardinal, "Three-dimensional ultrasound imaging," Physics in medicine and biology, vol. 46, p. R67, 2001.
[5] F. Tranquart, N. Grenier, V. Eder, and L. Pourcelot, "Clinical use of ultrasound tissue harmonic imaging," Ultrasound in medicine & biology, vol. 25, pp. 889–894, 1999.
[6] F. Forsberg, W. Shi, and B. Goldberg, "Subharmonic imaging of contrast agents," Ultrasonics, vol. 38, pp. 93–98, 2000.
[7] Y.-L. Huang, S.-J. Kuo, C.-C. Hsu, H.-S. Tseng, Y.-H. Hsiao, and D.-R. Chen, "Computer-aided diagnosis for breast tumors by using vascularization of 3-D power Doppler ultrasound," Ultrasound in medicine & biology, vol. 35, pp. 1607–1614, 2009.
[8] J. M. Rubin, R. O. Bude, P. L. Carson, R. L. Bree, and R. S. Adler, "Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US," Radiology, vol. 190, pp. 853–856, 1994.
[9] J.-W. H. Korstanje, R. W. Selles, H. J. Stam, S. E. R. Hovius, and J. G. Bosch, "Development and validation of ultrasound speckle tracking to quantify tendon displacement," Journal of Biomechanics, vol. 43, pp. 1373–1379, 2010.
[10] Y. Yoshii, H. R. Villarraga, J. Henderson, C. Zhao, K.-N. An, and P. C. Amadio, "Speckle Tracking Ultrasound for Assessment of the Relative Motion of Flexor Tendon and Subsynovial Connective Tissue in the Human Carpal Tunnel," Ultrasound in Medicine & Biology, vol. 35, pp. 1973–1981, 2009.
[11] J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," Ultrasonic Imaging, vol. 13, pp. 111–134, 1991.
[12] T.-M. Mak, Y.-P. Huang, and Y.-P. Zheng, "Liver Fibrosis Assessment Using Transient Elastography Guided with Real-Time B-mode Ultrasound Imaging: A Feasibility Study," Ultrasound in Medicine & Biology, vol. 39, pp. 956–966, 2013.
[13] T. Y. Wu, N. Guo, C. Y. Teh, and J. X. W. Hay, "Theory and fundamentals of ultrasound," in Advances in ultrasound technology for environmental remediation, ed: Springer, 2013, pp. 5–12.
[14] R. C. Molthen, V. A. Dumane, and J. M. Reid, "Characterization of ultrasonic B-scans using non-Rayleigh statistics," Ultrasound Med. Biol., vol. 21, pp. 161–170, 1995.
[15] S. W. Smith, H. Lopez, and W. J. Bodine, Jr., "Frequency independent ultrasound contrast-detail analysis," Ultrasound Med. Biol., vol. 11, pp. 467-77, 1985.
[16] J. F. Greenleaf, Tissue characterization with ultrasound: CRC Press, 1986.
[17] T. L. Szabo, Diagnostic ultrasound imaging: inside out: Academic Press, 2004.
[18] R. F. Wagner, S. W. Smith, J. M. Sandrik, and H. Lopez, "Statistics of Speckle in Ultrasound B-Scans," IEEE Trans. Sonics Ultrason., vol. 30, pp. 156–163, 1983.
[19] R. F. Wagner, M. F. Insana, D. G. Brown, "Unified approach to the detection and
classification of speckle texture in diagnostic ultrasound," Opt. Eng. 25, 1986.
[20] R. F. Wagner, M. F. Insana, D. G. Brown, "Statistical properties of radio-frequency
and envelope detected signals with applications to medical ultrasound, " JOSA A, 4(5), pp. 910–922, 1987.
[21] P. M. Shankar, "A model for ultrasonic scattering from tissues based on the K distribution," Phys. Med. Biol., vol. 40, pp. 1633–49, 1995.
[22] P. M. Shankar, "A general statistical model for ultrasonic backscattering from tissues," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 47, pp. 727–736, 2000.
[23] Y. M. Kadah, A. A. Farag, J. M. Zurada, A. M. Badawi, and A. M. Youssef, "Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images," IEEE Trans. Med. Imaging, vol. 15, pp. 466–478, 1996.
[24] F. Destrempes, G. Cloutier, "A critical review and uniformized representation of
statistical distributions modeling the ultrasound echo envelope," Ultrasound
Med. Biol. 36, pp. 1037–1051, 2010.
[25] M. F. Insana, R. F. Wagner, B. S. Garra, D. G. Brown, T. H. Shawker, "Analysis of
ultrasound image texture via generalized Rician statistics," Opt. Eng. 25, 1986.
[26] V. Dutt, J. F. Greenleaf, "Ultrasound echo envelope analysis using a homodyned K
distribution signal model," Ultrason. Imag. 16, pp. 265–287, 1994.
[27] D. P. Hruska, M. L. Oelze, "Improved parameter estimates based on the homodyned K distribution," IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 56, pp. 2471–2481, 2009.
[28] J. Mamou, M. L. Oelze, Quantitative ultrasound in soft tissues. Heidelberg:: Springer, pp. 252–254, 2013.
[29] P. M. Shankar, "Statistics of boundaries in ultrasonic B-scan images," Ultrasound
Med. Biol. 41, pp. 268–280, 2015.
[30] Y. Y. Liao, C. H. Li, P. H. Tsui, C. C. Chang, W. H. Kuo, K. J. Chang, C. K. Yeh, "Strain-compounding technique with ultrasound Nakagami imaging for distinguishing between benign and malignant breast tumors," Med. Phys. 39, pp. 2325–2333, 2012.
[31] M. C. Ho, J. J. Lin, Y. C. Shu, C. N. Chen, K. J. Chang, C. C. Chang, P. H. Tsui, "Using ultrasound Nakagami imaging to assess liver fibrosis in rats," Ultrasonics 52, pp. 215–222, 2012.
[32] M. C. Ho, Y. H. Lee, Y. M. Jeng, C. N. Chen, K. J. Chang, P. H. Tsui, "Relationship
between ultrasound backscattered statistics and the concentration of fatty
droplets in livers: an animal study," PloS one, 8(5), e63543, 2013.
[33] M. Caixinha, D. A. Jesus, E. Velte, M. J. Santos, J. B. Santos, "Using ultrasound
backscattering signals and Nakagami statistical distribution to assess regional
cataract hardness," IEEE Trans. Biomed. Eng. 61, pp. 2921–2929, 2014.
[34] X. Yang, P. Rossi, D. W. Bruner, S. Tridandapani, J. Shelton, T. Liu, "Noninvasive
evaluation of vaginal fibrosis following radiotherapy for gynecologic malignancies: a feasibility study with ultrasound B-mode and Nakagami parameter imaging," Medical physics 40.2, 2013.
[35] X. Yang, S. Tridandapani, J. J. Beitler, D. S. Yu, N. Wu, Y. Wang, D. W. Bruner, W. J.Curran, T. Liu, "Ultrasonic Nakagami-parameter characterization of parotid gland injury following head-and-neck radiotherapy: a feasibility study of late
toxicity," Medical physics 41.2, 2014.
[36] X. Yang, E. Yoshida, R. J. Cassidy, J. J. Beitler, D. S. Yu, W. J. Curran, T. Liu,
"Quantitative ultrasonic Nakagami imaging of neck fibrosis after head and neck
radiation therapy," Int. J. Radiat. Oncol. Biol. Phys. 92, pp. 407–414, 2015.
[37] C. Y. Wang, X. Geng, T. S. Yeh, H. L. Liu, P. H. Tsui, "Monitoring radiofrequency
ablation with ultrasound Nakagami imaging", Medical physics 40.7, 2013.
[38] Z. Zhou, S. Wu, C. Y. Wang, H. Y. Ma, C. C. Lin, P. H. Tsui, "Monitoring
radiofrequency ablation using real-time ultrasound Nakagami imaging
combined with frequency and temporal compounding techniques," PLoS One, 10(2), e0118030, 2015.
[39] X. Yu, W. N. Lee, "Characterization of the heart muscle aniosotropy using
ultrasound Nakagami imaging," IEEE Ultrason. Symp. Proc. 1, pp. 2367–
2370, 2014.
[40] J. Cheng, N. C. Beaulieu, "Maximum-likelihood based estimation of the
Nakagami m parameter," IEEE Commun. Lett. 5, pp. 101–103, 2001.
[41] R. Kolar, R. Jirik, J. Jan, "Estimator comparison of the Nakagami-m parameter
and its application in echocardiography," Radioengineering 13, pp. 8–12, 2004.
[42] H. Nakahara, E. Carcol, "Maximum likelihood method for estimating Coda Q and
the Nakagami-m parameter," Bull. Seismol. Soc. Am. 100, pp. 3174–3182, 2010.
[43] B. S. Everitt, "The Cambridge dictionary of statistics. 1998."
[44] A. N. Kolmogorov, "Sulla determinazione empirica di una legge di distribuzione," G. Ist. Ital. Attuari. 4, pp. 83–91, 1933.
[45] N. Smirnov, "Table for estimating the goodness of fit of empirical distributions," The annals of mathematical statistics 19.2, pp. 279–281, 1948.
[46] A. Abdi, M. Kaveh, "Performance comparison of three different estimator for the Nakagami m parameter using Monte Carlo simulations", IEEE Commun. Lett 4.4, pp. 119–121, 2000.
[47] R. G. Tolparev, V. A. Polyakov, "Estimation of the Nakagami probability distribution parameters in a detector employing false-alarm probability stabilization," Telecommunications and Radio Engineering 43.7, pp. 113–115, 1988.
[48] R. W. Lorenz, "Theoretical distribution functions of multipath propagation and their parameters for mobile radio communication in quasi-smooth terrain," in NATO AGARD Conf. Proc. Terrain Profiles and Contours in Electromagnetic Wave Propagation, no. 269, Spatind, Norway, pp. 17.1–17.16, 1979.
[49] J.A. Greenwood, D. Durand, "Aids for fitting the Gamma distribution by
maximum likelihood," Technometrics, vol. 2, pp. 55–65, 1960.
[50] K. U. Ingard and P. M. Morse, Theoretical Acoustics. Princeton university press, 1968.
[51] C. B. Burckhardt, "Speckle in ultrasound B-mode scans," IEEE Trans. Sonics Ultrason., vol. 25, pp. 1–6, 1978.
[52] R. C. Molthen, P. M. Shankar, J. M. Reid, F. Forsberg, E. J. Halpern, C. W. Piccoli, et al., "Comparisons of the Rayleigh and K-distribution models using in vivo breast and liver tissue," Ultrasound Med. Biol., vol. 24, pp. 93–100, 1998.
[53] B. I. Raju and M. A. Srinivasan, "Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 49, pp. 871–882, 2002.
[54] V. M. Narayanan, P. M. Shankar, and J. M. Reid, "Non-Rayleigh statistics of ultrasonic backscattered signals," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 41, pp. 845–852, 1994.
[55] P. M. Shankar, V. A. Dumane, J. M. Reid, V. Genis, F. Forsberg, C. W. Piccoli, et al., "Classification of ultrasonic B-mode images of breast masses using Nakagami distribution," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 48, pp. 569–580, 2001.
[56] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Function. Dover
Publications, 1965.
[57] J.A. Jensen, "Simulation of advanced ultrasound systems using Field II," IEEE Int.Symp. Biomed. Imag.: Nano to Macro, pp. 636–639, 2004.
[58] H. Azhari, Basics of biomedical ultrasound for engineers. John Wiley & Sons, 2010.
[59] E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, "Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms," Phys. Med. Biol., vol. 50, pp. 5597–5618, 2005.
[60] E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, "Tissue mimicking materials for ultrasound phantoms," Medical physics, vol. 5, pp. 391–394, 1978.