簡易檢索 / 詳目顯示

研究生: 劉胡丞
Liu, Hu-cheng
論文名稱: 應用於合成氣燃燒反應之蜂巢狀波洛斯凱特型觸媒中媒介層之改質
Improvement on the Primer of Honeycomb-supported Perovskite Catalysts for Syngas combustion
指導教授: 翁鴻山
Weng, Hung-shan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 120
中文關鍵詞: 蜂巢狀觸媒甲烷燃燒波洛斯凱特型觸媒氧化鑭
外文關鍵詞: Methane combustion, Monolithic catalyst, Perovskite-type catalyst, Lanthanum oxide
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是以挑選最適用於合成氣燃燒反應之蜂巢狀波洛斯凱特型觸媒中的媒介層為目標。媒介層為蜂巢狀陶瓷擔體與活性物質之間的媒介。不同媒介層有不同的物理、化學與機械性質,對活性物質會產生不同的交互作用。本研究採用檸檬酸溶膠凝膠法製備不同的金屬氧化物取代原本常用的氧化鋁作為媒介層,在其上擔載波洛斯凱特型觸媒(La0.7Ce0.3Co0.6Mn0.4O3)期能提高所製成的蜂巢狀觸媒的催化活性。在篩選出最能有效提升催化活性的媒介層後,再進行觸媒穩定性測試。也藉由觸媒表面性質的鑑定(BET、XRD及SEM等)與H2-TPR以了解觸媒之表面性質與還原難易,來了解改變媒介層對觸媒催化活性產生的影響。
    篩選結果顯示,以氧化鑭為媒介層最能有效提升蜂巢狀觸媒整體的催化活性與穩定性。而改變各媒介層的鍛燒溫度對蜂巢狀觸媒整體活性的影響並不大,主要是因除了氧化鑭之外其餘氧化物晶相並無太大的改變。而氧化鑭晶相會隨著鍛燒溫度有所改變,但披覆上活性物質溶液鍛燒後,晶相僅剩La(OH)3與La2O3兩種。我們單純將氧化鑭披覆在蜂巢狀載體,進行的甲烷燃燒反應測試,發現此兩種晶相的活性相差不大,因而使氧化鑭雖受鍛燒溫度影響晶相,卻不影響蜂巢狀觸媒的活性。氧化鑭媒介層的量對觸媒活性有些微的提升的效果,主要是因為氧化鑭本身擁有不錯的催化活性。而活性物質披覆量的增加對觸媒活性有明顯上升的趨勢,主要是因為披覆量的增加,甲烷與活性物質接觸反應的機會變多。在進料添加H2與CO,會因為競爭吸附與反應而使CH4轉化率略微降低。我們曾分次將媒介層與活性物質披覆在蜂巢狀載體上雖擁有較好的活性,但表面活性物質會有些微脫落的現象。也曾嘗試將氧化鋁、氧化鑭前驅液與活性物質粉末混合後披覆於蜂巢狀載體,發現能形成較為緻密的結構。

    The main objective of this research is to select a proper primer for the honeycomb-supported perovskite catalysts for catalyzing syngas combustion. The primer, as a medium, locates between honeycomb cordierite and active species(La0.7Ce0.3Co0.6Mn0.4O3). All kinds of the primers have respective physical, chemical and mechanical properties, and will interact with perovskite. We prepared several metal oxides by sol-gel method to substitute alumina for the ordinary primer in order to enhance catalytic activity performance. After determining the primer which could effectively enhance catalytic activity, we carried out the stability test. We also characterized the catalysts by BET, XRD, SEM and H2-TPR. According to the results obtained from the above-mentioned techniques, we can understand the effects of various primer on catalytic activity.
    In catalytic activity tests for methane combustion, we found that lanthanum oxide, as a primer, can enhance catalytic activity and stability effectively. Changing calcination temperature for various primers had less effect on catalytic activity because the crystal phases of these oxides almost have no change except lanthanum oxide. Although the crystal phases of lanthanum oxide changes with calcination temperature after being coated with active species, only the crystal phases of La(OH)¬3 and La2O3 appear. Thereafter, we used lanthanum oxide as the primer to prepare honeycomb catalyst for further study. We found that the above two crystal phases had no obvious difference in their catalytic activity for mehane combusion. Therefore, the change in crystal phases of lanthanum oxide with the calcination temperature did not affect the catalytic activity of monolithic catalyst. When the amount of lanthanum oxide was increased, the catalytic activity was slightly enhanced because lanthanum oxide itself is active. When the amount of active species was increased, catalytic activity was enhanced obviously because the chance for methane to contact with active species was increased. Addition of H2 and CO to the feed slightly inhibited the activity of catalyst for methane combustion, because their competitive adsorption and reaction with methane.
    The monolithic catalyst prepared by wash-coating lanthanum oxide on cordierite, followed by loading active species would give a higher activity than that with alumina as the primer. Although twice wash-coating with lanthanum oxide would give a higher activity, active species would tend to flake off. We tried to mix powder of active species with precursor of alumina or lanthanum oxide and then coated it on honeycomb support, the monolith thus prepared had a more stable structure.

    目錄 中文摘要…………………………………………………………………Ι 英文摘要………………………………………………………………Ⅲ 誌謝……………………………………………………………………Ⅴ 目錄……………………………………………………………………Ⅵ 圖目錄………………………………………………………………Ⅹ 表目錄………………………………………………………………ⅩⅣ 第一章 序論……………………………………………………………1 1-1 前言……………………………………………………………1 1-2 研究動機與目的………………………………………………2 第二章 基本原理與文獻回顧…………………………………………4 2-1 Perovskite型觸媒………………………………………………4 2-2 蜂巢狀觸媒……………………………………………………13 2-2-1 蜂巢狀陶瓷載體( Ceramic monolith )………………14 2-2-2 蜂巢狀金屬載體( Metallic monolith )……………15 2-2-3 蜂巢狀觸媒的製備………………………………………16 2-2-4 蜂巢狀觸媒的應用………………………………………17 2-2-5 結論………………………………………………………25 第三章 觸媒之製備、鑑定與活性測試……………………………27 3-1 藥品與材料…………………………………………………27 3-2 儀器設備……………………………………………………28 3-3 蜂巢狀perovskite型觸媒的製備…………………………30 3-3-1 披覆媒介層與活性物質分次擔載於蜂巢狀載體……30 3-3-2 披覆媒介層與活性物質混合後擔載於蜂巢狀載體…35 3-4 觸媒物理性質分析…………………………………………36 3-4-1 熱重分析( TGA )………………………………………36 3-4-2 BET表面積分析…………………………………………36 3-4-3 X射線繞射( XRD )分析………………………………36 3-4-4 掃描式電子顯微鏡( Scanning electron micrope, SEM)………………………………………………………………………37 3-5 觸媒化性分析與活性測試……………………………………38 3-5-1 程溫還原 ( Temperature Programmed Reduction, TPR )…………………………………………………………………………38 3-5-2 觸媒活性測試……………………………………………39 第四章 觸媒性質鑑定與活性測試…………………………………43 4-1 披覆媒介層與活性物質分次擔載與蜂巢狀載體……………43 4-1-1 XRD分析結果………………………………………………43 4-1-2 BET 等溫物理吸附分析…………………………………53 4-1-3 SEM與EDAX分析…………………………………………62 4-1-4 熱重分析( TGA )…………………………………………66 4-1-5 觸媒活性測試結果………………………………………68 4-1-5.A 各披覆媒介層在500鍛燒下的活性比較……………68 4-1-5.B 改變披覆媒介層鍛燒溫度對觸媒活性的效應……69 4-1-5.C 穩定性測試…………………………………………69 4-1-5.D 改變氧化鑭媒介層鍛燒溫度對觸媒活性的影響…70 4-1-5.E 單純披覆媒介層與蜂巢狀陶瓷的活性測試………70 4-1-5.F 改變氧化鑭媒介層披覆量對觸媒活性的影響……71 4-1-5.G 改變活性物質(La0.7Ce0.3Co0.6Mn0.4O3)擔載量對 觸媒活性的影響…………………………72 4-1-5.H 粉末狀觸媒與蜂巢狀觸媒的活性比較……………72 4-1-5.I 混合進料( CH4、H2與CO )之燃燒反應測試………73 4-1-6 程溫還原( Temperature Programmed Reduction, TPR )…………………………………………………………………………81 4-2 披覆媒介層與活性物質混合後擔載於蜂巢狀載體…………84 4-2-1 氧化鋁前驅體與活性物質混合…………………………84 4-2-2 氧化鑭前驅體與活性物質混合…………………………85 4-2-3 XRD分析結果……………………………………………85 4-2-4 SEM與EDAX………………………………………………87 4-2-5 觸媒活性測試……………………………………………94 第五章 總結……………………………………………………………96 5-1 結論……………………………………………………………96 5-2 未來研究方向與建議…………………………………………98 參考文獻………………………………………………………………99 自述……………………………………………………………………104 圖目錄 圖1-1 世界能源蘊藏量的統計…………………………………………...…1 圖2-1 Perovskite型金屬氧化物結構……………………….………….…...5 圖2-2 LaCr0.5-xMnxMg0.5O3.yMgO型觸媒進行硫的毒化實驗…………8 圖2-3進料添加H2O或CO2造成的效應…………………………………..9 圖2-4不同製備方法的EPR圖譜………………………………………....10 圖2-5利用火焰水解法製備的觸媒之穩定性測試…………………….…10 圖2-6不同Sr部份取代量對Sr/La與Cr/La原子比率的影響………..…11 圖2-7 LaMO3(M=Mg, Ti, Fe)觸媒進行TPD-O2測試……………………..13 圖2-8不同孔道密度的蜂巢狀陶瓷擔體………………………………..…15 圖2-9蜂巢狀觸媒製備流程圖…………………………………………..…17 圖2-10不同披覆媒介層之TPR比較………………………..…………….19 圖2-11 1. La0.92Pd0.08CoO3與2.La0.9Ag0.1CoO3之穩定性測試…………….21 圖2-12 (a) Ce1-xCuxO2-x(b) Ce1-xCuxO2-x/ Al2O3(c) Ce1-xCuxO2-x/ Al2O3/ FeCrAl在Ce與Cu不同比例下之TPR圖……………………….22 圖2-13不同氧化物當披覆媒介層在各溫度下的NO產率………..……..23 圖2-14 (a)Rh/Al2O3(b)Rh-LaCoO3/Al2O3(c) Rh-LaMnO3/Al2O3觸媒之 TPR………………………………………………………………....23 圖3-1蜂巢狀陶瓷披覆氧化鋁後,進行鍛燒之升溫程序…………………31 圖3-2披覆有媒介層之蜂巢狀陶瓷上擔載活性物質之前驅體後,進 行鍛燒之升溫程序………………………………………………...…33 圖3-3蜂巢狀觸媒製備流程圖( B = La、Ce、Zr、Cu、Y )………….….34 圖3-4反應實驗裝置圖……………………………………………….….…41 圖3-5反應器構造圖………………………………………………….….…42 圖4-1不同披覆媒介層在500℃下鍛燒之XRD圖譜…………….….…..46 圖4-2在500℃下鍛燒混入perovsktie溶液後之XRD圖譜……………..46 圖4-3不同比例下的CexZr1-xOδ當披覆媒介層時之XRD圖譜……….…47 圖4-4混入perovsktie溶液後,不同比例下的CexZr1-xOδ之XRD圖譜 …………………………………………………………………….....47 圖4-5不同比例下的CexY1-xOδ當披覆媒介層時之XRD圖譜………….48 圖4-6混入perovsktie溶液後,不同比例下的CexY1-xOδ之XRD圖譜..48 圖4-7不同披覆媒介層在700℃下鍛燒之XRD圖譜………………….....49 圖4-8在700℃下鍛燒混入perovsktie溶液後之XRD圖譜……………..49 圖4-9氧化鑭在不同鍛燒溫度下之XRD圖譜……………………………52 圖4-10 Al2O3與La2O3當披覆媒介層時的孔徑分佈………………………55 圖4-11 CeO2、ZrO2與CuO當披覆媒介層時的孔徑分佈……………….56 圖4-12 CexZr1-xOδ當披覆媒介層時的孔徑分佈…………………………..57 圖4-13 CexY1-xOδ當披覆媒介層時的孔徑分佈……………………………58 圖4-14氧化鑭粉末在不同鍛燒溫度下的孔徑分佈……………………….61 圖4-15未披覆任何金屬氧化物的蜂巢狀陶瓷載體SEM與EDAX分 析………………………………………………………..……...…..63 圖4-16已披覆La2O3的蜂巢狀陶瓷載體SEM與EDAX分析……….….64 圖4-17已披覆La2O3並擔載La0.7Ce0.3Co0.6Mn0.4O3的蜂巢狀陶瓷載體 SEM與EDAX分析…………………………………………….…65 圖4-18由檸檬酸溶膠凝膠法所製備的氧化鑭前驅液之TGA與DTGA ……………………………………………………………………...67 圖4-19以不同媒介層製成之蜂巢狀觸媒的活性測試結果………………74 圖4-20以不同比例的CexZr1-xOδ當媒介層所製成蜂巢狀觸媒的活性測 試結果……………………………………………………………...74 圖4-21以不同比例的CexY1-xOδ當媒介層所製成蜂巢狀觸媒的活性測 試結果……………………………………………………………...75 圖4-22不同披覆媒介層在700℃下鍛燒所製成蜂巢狀觸媒活性測試 結果………………………………………………………………...75 圖4-23披覆不同媒介層的蜂巢狀觸媒經100小時穩定性測試結果........77 圖4-24氧化鑭媒介層在不同溫度鍛燒下對觸媒活性的影響……………77 圖4-25單純在蜂巢狀載體上披覆氧化鑭後在不同溫度鍛燒下的氧化 鑭之活性測試……………………………………………………...78 圖4-26單純在蜂巢狀載體上披覆各種披覆媒介層之活性測試………....78 圖4-27氧化鑭媒介層不同披覆量對反應的影響…………………………79 圖4-28活性物質(La0.7Ce0.3Co0.6Mn0.4O3)在不同擔載量下對反應的影 響…………………………………………………………………...79 圖4-29 La0.7Ce0.3Co0.6Mn0.4O3粉末與蜂巢狀觸媒催化活性的比較………80 圖4-30混合進料之燃燒反應測試………………………………………….80 圖4-31各披覆媒介層在500℃下鍛燒後,再擔載活性物質後之 H2-TPR…………………………………………………...………...82 圖4-32各披覆媒介層在700℃下鍛燒後,再擔載活性物質後之H2- TPR…………………………………………………………………82 圖4-33披覆媒介層CexZr1-xOδ,再擔載活性物質後之H2-TPR…………83 圖4-34披覆媒介層CexY1-xOδ,再擔載活性物質後之H2-TPR………….83 圖4-35 Boehmite、氧化鋁粉末溶液與活性物質粉末、活性物質前驅 液混合,再披覆於蜂巢狀載體之XRD圖…………………………86 圖4-36氧化鑭溶液與不同量活性物質粉混合,再擔載於蜂巢狀載體 之XRD圖……………………………………………………………87 圖4-37 Boehmite溶液與活性物質粉末混合後擔載於蜂巢狀載體之 SEM與EDAX分析……………………………………………….89 圖4-38 Boehmite溶液與活性物質溶液混合後擔載於蜂巢狀載體之 SEM與EDAX分析……………………………………………….90 圖4-39氧化鋁粉末溶液與活性物質溶液混合後擔載於蜂巢狀載體之 SEM與EDAX分析……………………………………………….91 圖4-40氧化鋁粉末溶液與活性物質粉末混合後擔載於蜂巢狀載體之 SEM與EDAX分析……………………………………………….92 圖4-41氧化鑭前驅液與活性物質粉末混合後披覆於蜂巢狀載體之 SEM與EDAX分析……………………………………………….93 圖4-42 Boehmite、氧化鋁粉末溶液與活性物質粉末或溶液混合,再 擔載於蜂巢狀載體之SEM與EDAX分析……………………….95 圖4-43氧化鑭溶液與活性物質粉末混合,再擔載於蜂巢狀載體之 SEM與EDAX分析………………………………………………..95 表目錄 表2-1常見於Perovskite結構之A、B元素……………………………..…6 表3-1 Boehmite與γ-Al2O3物性介紹……………………………………....29 表3-2蜂巢狀陶瓷載體物性表……………………………………………..30 表4-1在500℃下鍛燒,各披覆媒介層所得之d-spacing與grain size ………………………………………………………………..……...50 表4-2在500℃下鍛燒,各披覆媒介層與perovskite溶液混合後所得 之d-spacing與Grain size……………………………………..........51 表4-3氧化鑭在不同鍛燒溫度下之之d-spacing與Grain size……………52 表4-4各披覆媒介層擔載於蜂巢狀陶瓷載體後之表面積、孔體積與平 均孔徑………………………………………………………………59 表4-5各披覆媒介層擔載於蜂巢狀陶瓷載體後,再擔載活性物質 (La0.7Ce0.3Co0.6Mn0.4O3)之表面積、孔體積與平均孔徑………..…60 表4-6氧化鑭在各鍛燒溫度下之表面積、孔體積與平均孔徑………….61 表4-7不同披覆媒介層擔載La0.7Ce0.3Co0.6Mn0.4O3 perovskite所製成的 蜂巢狀觸媒的活性測試結果……………………………………….76

    1. BP Statistical Review of World Energy 2006.
    2. S. Cimino, A. Di Benedetto, R. Pirone, G.. Russo,“CO, H2 or C3H8 assisted catalytic combustion of methane over supported LaMnO3 monoliths”,Catalysis Today, 29 ,33 (2003).
    3. 蘇崇毅, 蜂巢狀波洛斯凱特型觸媒用於合成氣燃燒之研究, 國立成功大學化學工程學系碩士論文(2005).
    4. Z Zhong, Kaidong chen, Yong Ki, Qijie Yan, Applied Catalysis A: General, 156, 29 (1997).
    5. M. Pechini,“Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor”,U.S. Patent 3,330,697 (1967) .
    6. P. Ciambelli, S. Cimino, S. De Rossi, L. Lisi, G. Minelli, P. Porta, G.. Russo“AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 perovskites methane combustion and CO oxidation catalysts:structural, redox and catalytic properties”,Applied Catalysis B: Environmental, 29, 239, (2001).
    7. R. Spinicci, A. Tofanari, A. Delmastro , D. Mazza, S. Ronchetti“Catalytic properties of stoichiometric and non-stoichiometric LaFeO3 perovskite for total oxidation of methane”, Materials Chemistry and Physics, 76, 20, (2002).
    8. Y. Liu, Haitao Zheng, Jinrong Liu, Tong Zhang “Preparation of high surface area La1−xAxMnO3 (A = Ba, Sr or Ca)ultra-fine particles used for CH4 oxidation”, Chemical Engineering Journal, 89, 213, (2002).
    9. S. Cimino , L. Lisi , S. De Rossi , M. Faticanti , P. Porta “Methane combustion and CO oxidation on LaAl1−xMnxO3 perovskite-type oxide solid solutions”, Applied Catalysis B: Environmental, 43, 397, (2003).
    10. I. Rosso, E. Garrone, F. Geobaldo, B. Onida, G. Saracco, V. Specchia“Sulphur poisoning of LaMn1−xMgxO3•yMgO catalysts for methane combustion”, Applied Catalysis B: Environmental, 34, 29, (2001).
    11. I. Rosso, E. Garrone, F. Geobaldo, B. Onida, G. Saracco, V. Specchia“Sulphur poisoning of LaMn1−xMgxO3 catalysts for natural gas combustion”, Applied Catalysis B: Environmental, 30,61, (2001).
    12. I. Rosso, G. Saracco, V. Specchia, E. Garrone“Sulphur poisoning of LaCr0.5−xMnxMg0.5O3•yMgO catalysts for methane combustion”, Applied Catalysis B: Environmental, 40,195, (2003).
    13. C.-H. Wang , C.-L. Chen , H.-S. Weng“Surface properties and catalytic performance of La1-xSrxFeO3 perovskite-type oxides for methane combustion”, Chemosphere, 57, 1131 (2004).
    14. L. Fabbrini , A. Kryukov, S. Cappelli , G.L. Chiarello, I. Rossetti, C. Oliva, L. Forni“Sr1–xAgxTiO3±δ (x = 0, 0.1) perovskite-structured catalysts for the flameless combustion of methane”, Journal of Catalysis, 232, 247, (2005).
    15. E. Campagnoli, A. Tavares, L. Fabbrini, I. Rossetti,Yu.A. Dubitsky, A. Zaopob, L. Forni,“Effect of preparation method on activity and stability of LaMnO3 and LaCoO3 catalysts for the flameless combustion of methane”, Applied Catalysis B: Environmental, 55, 131, (2005).
    16. C. Oliva , S. Cappelli , I. Rossetti , A. Kryukov , L. Bonoldi , L. Forni ,“Effect of M ion oxidation state in Sr1−xMxTiO3±δ perovskites in methane catalytic flameless combustion”, Journal of Molecular Catalysis A: Chemical, 245, 55, (2006).
    17. B.P. Barbero , J. A. Gamboa , L. E. Cadu´s, “Synthesis and characterisation of La1-xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds”, Applied Catalysis B: Environmental, 65, 21, (2006).
    18. K.Rida ,A.Benabbas , F. Bouremmad , M.A. Pen˜a , A.Martı’nez-Arias ,“Surface properties and catalytic performance of La1-xSrxCrO3 perovskite-type oxides for CO and C3H6 combustion ”, Catalysis Communications, 7, 963, (2006).
    19. R. Zhang , A. Villanueva , H. Alamdari , S. Kaliaguine, “Catalytic reduction of NO by propene over LaCo1-xCuxO3 perovskites synthesized by reactive grinding”, Applied Catalysis B: Environmental, 64, 220, (2006).
    20. S. Ifrah , A. Kaddouri , P. Gelin , D. Leonard ,“Conventional hydrothermal process versus microwave-assisted hydrothermal synthesis of La1-xAgxMnO3+δ (x =0, 0.2) perovskites used in methane combustion”,C. R. Chimie, 10, 1216, (2007).
    21. S. Petrovic´ , A. Terlecki-Baricˇevic´ , Lj. Karanovic´ , P. Kirilov-Stefanov ,
    M. Zdujic´, V. Dondur , D. Paneva , I. Mitov , V. Rakic´ ,“LaMO3 (M = Mg, Ti,
    Fe) perovskite type oxides: Preparation, characterization and catalytic properties
    in methane deep oxidation”, Applied Catalysis B: Environmental, 79, 186, (2008) .
    22. T. Nijhuis, A. Beers, T. Vergunst, I. Hoek, F. Kapteijn, and J. A. Moulijn, “Preparation of monolithic catalysts”,Catalysis reviews, 43, 345, (2001).
    23. V. Blachou, D. Goula, C. Philippopoulos,“Wet milling of Alumina and preparation of Slurries for Monolithic structures Impregnation”, Ind. Eng. Chem. Res., 31, 364 (1992) .
    24. M. Ferrandon, M. Berg, E. Björnbom,“Thermal stability of metal-supported catalysts for reduction of cold-start emission in a wood-fired domestic boiler”,Catalysis today, 53, 647, (1999).
    25. M. Valentini, G. Groppi, C. Cristiani, M. Levi, E. Tronconi, P. Forzatti,“The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts” ,Catalysis Today, 69, 307, (2001).
    26. X. Wu, H. Chen, L. Xu,D. Weng,“Effect of surface Oxidation and precoating on combustion Performance of Al2O3 Washcoat on Metallic Substrate”,Journal of the Chinese rare earth society, 20, 68, (2002).
    27. S. Zhao, J. Zhang, D. Weng, X. Wu,“A method to form well-adhered γ-Al2O3 layers on FeCrAl metallic supports ”, Surface and coating technology, 167, 97, (2003).
    28. L .Yang, C. Li,H. Liu,“Preparation of Pseudoboehmite coating on Metal Substrate”,Chinese Journal of Catalysis, 25(4), 283, (2004).
    29. X.Wu, D. Weng, S. Zhao, W. Chen,“Influence of an aluminized intermediate layer on the adhesion of a γ-Al2O3 washcoat on FeCrAl”,Surface and coatings technology, 190, 434, (2005).
    30. E. Wloch, A. Lukaszczyk, Z. Zurek, B. Sulikowski,“Sythesis of ferrierite coating on FeCrAl substrate”,Catalysis Today, 114, 236, (2006).
    31. Th. Vergunst, F. Kapteijn, J.A. Moulijn,“Preparation of carbon-coated monolithic supports”,Carbon, 40, 1891, (2002).
    32. T. Vergunst, M. J. G. Linders, F. Kapteijn, and J. A. Moulijn, “Carbon-based Monolithic structures”Catalysis reviews, 43(3), 291, (2001).
    33. 徐菁卿, 蜂巢狀奈米金屬氧化物觸媒催化以氫為還原劑之一氧化氮還原反應, 國立成功大學化學工程學系碩士論文 (2005).
    34. R. J. Farrauto , K. E. Voss, “Monolithic diesel oxidation catalysts
    ”, Applied Catalysis B: Environmental, 10, 29, (1996).
    35. R. M. Heck,R. J.Farrauto, Catalytic Air Pollution Control:Commercial Technology, Wiley, New York, 1995.
    36. S. Cimino, R. Pirone, L. Lisi, “Zirconia supported LaMnO3 monoliths for the catalytic combustion of methane”, Applied Catalysis B: Environmental, 35, 243, (2002).
    37. R. Kikuchi, S. Maeda, K. Sasaki, S. Wennerström, Y. Ozawa, K. Eguchi, “Catalytic activity of oxide-supported Pd catalysts on a honeycomb for low-temperature methane oxidation”, Applied Catalysis A: General, 239, 169, (2003).
    38. L. Fabbrini, I. Rossetti, L. Forni,“Effect of primer on honeycomb -supported La0.9Ce0.1CoO3±δ perovskite for methane catalytic flameless combustion”, Applied Catalysis B: Environmental, 44, 107, (2003).
    39. L. Fabbrini, I. Rossetti, L. Forni, “La2O3 as primer for supporting La0.9Ce0.1CoO3+δ on cordieritic honeycombs”, Applied Catalysis B: Environmental, 56, 221, (2005).
    40. L. Fabbrini, I. Rossetti, L. Forni, “Effect of honeycomb supporting on activity of LaBO3+δ perovskite-like catalysts for methane flameless combustion”, Applied Catalysis B: Environmental, 63, 131, (2006).
    41. A. V. Boix, J. M. Zamaro, E. A. Lombardo, E. E. Miró, “The beneficial effect of silica on the activity and thermal stability of PtCoFerrierite- washcoated cordierite monoliths for the SCR of NOx with CH4”, Applied Catalysis B: Environmental, 46, 121, (2003).
    42. B. Kucharczyk, W. Tylus, “Effect of Pd or Ag additive on the activity and stability of monolithic LaCoO3 perovskites for catalytic combustion of methane”, Catalysis Today, 90, 126, (2004).
    43. F. Yin, S. Ji , N. Chen, M. Zhang, L. Zhao,C. Li , H. Liu, “Ce1-xCuxO2-x /Al2O3/FeCrAl catalysts for catalytic combustion of methane”, Catalysis Today, 105, 372, (2005).
    44. F.Yin, S. Ji , B. Chen, L. Zhao, H. Liu, C. Li,“Preparation and characterization of LaFe1-xMgxO3/Al2O3/FeCrAl:Catalytic properties in methane combustion”, Applied Catalysis B: Environmental, 66, 265, (2006).
    45. N.Chen,S. JI, F. Yin,L. Zhao, W.Wang , C. Li, H. Liu,“Preparation of LaAl1-xFexO3/ Al2O3/FeCrAl Catalyst and Its Catalytic Performance for Methane Combustion”,Chinese Journal of Catalysis, 26(11), 1017, (2005).
    46. L.A. Isupova , E.F. Sutormina, N.A. Kulikovskaya, L.M. Plyasova, N.A. Rudina, I.A. Ovsyannikova, I.A. Zolotarskii, V.A. Sadykov,“Honeycomb supported perovskite catalysts for ammonia oxidation processes”, Catalysis Today, 105, 429, (2005).
    47. S. Cimino, G. Landi, L. Lisi, G. Russo,“Rh–La(Mn,Co)O3 monolithic catalysts for the combustion of methane under fuel-rich conditions”, Catalysis Today, 117, 454, (2006).
    48. L.F. Liotta, G. Di Carlo, G. Pantaleo, G. Deganello, E. Merlone Borla, M. Pidria,“Honeycomb supported Co3O4/CeO2 catalyst for CO/CH4 emissions
    abatement: Effect of low Pd–Pt content on the catalytic activity” , Catalysis
    Communications, 8, 299, (2007).
    49. L. Jin, M. He, J. Lu, A. Jia, X. Su, M. Luo,“Preparation and Catalytic Performance of Pd Monolithic Catalysts Supported by Y2O3 Washcoat”, Chinese journal of catalysis, 28(7), 635, (2007).
    50. M.-F. Luo, M. He, Y.-L. Xie, P. Fang, L.-Y. Jin,“Toluene oxidation on Pd catalysts supported by CeO2–Y2O3 washcoated cordierite honeycomb”, Applied Catalysis B: Environmental, 69, 213, (2007).
    51. B. Kucharczyk, W. Tylus,“Partial substitution of lanthanum with silver in the LaMnO3 perovskite: Effect of the modification on the activity of monolithic catalysts in the reactions of methane and carbon oxide oxidation
    ”, Applied Catalysis A: General, 335, 28, (2008).
    52. S.H. Zeng, Y. Liu,“Nd- or Zr-modified CuO–CeO2/Al2O3/FeCrAl monolithic
    catalysts for preferential oxidation of carbon monoxide in hydrogen-rich gases
    ”, Applied Surface Science, 254, 4879, (2008).
    53. M. Valentini, G. Groppi, C. Cristiani, M. Levi, E. Tronconi, P. Forzatti, Catalysis Today, 69, 307, (2001).

    下載圖示 校內:2009-08-04公開
    校外:2009-08-04公開
    QR CODE