簡易檢索 / 詳目顯示

研究生: 詹大維
Chan, Ta-Wei
論文名稱: 操控胞內鈣離子濃度以調節三陰性乳癌細胞之初級纖毛生成
Modulating intracellular calcium concentration to regulate primary ciliogenesis in triple-negative breast cancer cells
指導教授: 邱文泰
Chiu, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 84
中文關鍵詞: 初級纖毛鈣離子光遺傳學
外文關鍵詞: Primary cilia, Ca2+, Optogenetics
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三陰性乳癌(TNBC)是一種具預後不良以及極高復發率的乳癌亞型,其特徵為缺乏動情激素受體(ER)、黃體激素受體(PR)以及人類表皮因子受體(HER2)之表達。目前三陰性乳癌仰賴化學療法,而抗藥性的產生是透過化療藥物根除癌細胞最主要的障礙。初級纖毛是突出細胞表面的胞器,它可以感測細胞外的物理及化學刺激,進而活化特定訊息途徑並活化下游基因表達。目前已有研究證實大多數癌細胞並不擁有初級纖毛,然而,初級纖毛生成在具抗藥性的癌細胞中可以被觀察到。鈣離子(Ca2+)在細胞訊息傳遞中扮演重要的角色,而鈣離子平衡失調已被證實與癌症發展有關,因此我們假設鈣離子參與三陰性乳癌細胞中初級纖毛所介導之化療抗藥性。在本研究中,我們將重點聚焦在細胞內鈣離子濃度是否會影響初級纖毛生成。我們發現ionomycin所引發的鈣離子內流能夠抑制纖毛生成,鈣離子螯合劑BAPTA-AM所造成的鈣離子濃度下降也能夠造成纖毛生成下調,而我們也發現鈣池操控鈣離子流(SOCE)可負調控纖毛生成。此外,透過光遺傳學工具調控鈣離子震盪波也可透過活化Aurora A進而下調纖毛生成水平。雖然在本研究中初級纖毛以及抗藥性之間的模糊關係尚未被釐清,我們的發現提供了纖毛生成可以被胞內鈣離子濃度調控的證據。

    Triple-negative breast cancer (TNBC) is a breast cancer subtype with poor prognosis and high recurrence, which is characterized by lacking estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. TNBC currently relies on chemotherapy treatment and the development of chemoresistance is a major obstacle to successfully eradicate cancer cells with chemotherapy. Primary cilium is an organelle protruding from the cell surface which can detect extracellular physical and chemical stimulations, activate specific signaling pathways and further activate downstream gene expression. Currently, some studies have verified that most cancer cells do not possess primary cilia; however, ciliogenesis can be observed in the cancer cells with chemoresistance. Calcium (Ca2+) plays an essential role in cellular signaling transduction. Ca2+ homeostasis dysregulation has already been verified to be associated with cancer development. We hypothesize that Ca2+ is involved in the primary cilia-mediated chemoresistance in TNBC cells. In this study, we focus on investigating whether cytosolic Ca2+ concentrations affect ciliogenesis. We found that ionomycin-induced Ca2+ influx suppressed ciliogenesis levels in TNBC cells and Ca2+ chelator BATPA-AM-induced Ca2+ depletion also caused ciliogenesis down-regulation. We also found that store-operated Ca2+ entry (SOCE) negatively regulated ciliogenesis. Furthermore, modulating Ca2+ oscillation by optogenetic tools also down-regulated ciliogenesis levels through Aurora A activation. Although the vague relationship between primary cilia and chemoresistance has not yet been determined in this study, our findings provide evidence that primary ciliogenesis can be regulated by manipulating intracellular Ca2+ concentration.

    Abstract i 中文摘要 ii Acknowledgment iii Contents v Figure contents vii Chapter 1 Introduction 1 1.1 Triple-negative breast cancer (TNBC) 1 1.2 Primary cilia 2 1.3 Calcium 3 1.4 Optogenetics 4 1.5 Specific aims of this study 5 Chapter 2 Materials and Methods 6 2.1 Cell culture and plasmid transfection 6 2.2 Immunofluorescence staining and confocal microscopy 6 2.3 Cell cytotoxicity analysis 7 2.4 Live/dead cell imaging assay 7 2.5 Single-cell intracellular Ca2+ [Ca2+]i measurement 8 2.6 Optogenetic platform 8 2.7 Ca2+-related chemicals 8 2.8 Western blotting 9 2.9 Statistical analysis 10 Chapter 3 Results 11 3.1 Screening TNBC cell lines by testing ciliogenesis level profile 11 3.2 Cisplatin and doxorubicin treatment could promote ciliogenesis 12 3.3 Intracellular Ca2+ elevation and depletion down-regulated 13 ciliogenesis level 13 3.4 Store-operated Ca2+ entry negatively regulated ciliogenesis 14 3.5 Optogenetically modulating Ca2+ oscillations affect ciliogenesis 15 Chapter 4 Discussion 18 References 21 Figures 25 Appendix Figures 68

    Ahn, C., Kang, J. H., & Jeung, E. B. (2017). Calcium homeostasis in diabetes mellitus. Journal of Veterinary Science, 18(3), 261–266.
    Alaiwi, W. A. A., Lo, S. T., & Nauli, S. M. (2009). Primary Cilia: Highly sophisticated biological sensors. Sensors (Basel, Switzerland), 9(9), 7003.
    Anders, C. K., Abramson, V., Tan, T., & Dent, R. (2016). The evolution of triple-negative breast cancer: From biology to novel therapeutics. American Society of Clinical Oncology Educational Book, 36, 34–42.
    Arnal, I., & Wade, R. H. (1995). How does taxol stabilize microtubules? Current Biology, 5(8), 900–908.
    Bernabé-Rubio, M., & Alonso, M. A. (2017). Routes and machinery of primary cilium biogenesis. Cellular and Molecular Life Sciences, 74(22), 4077–4095.
    Carter, M. E., & de Lecea, L. (2011). Optogenetic investigation of neural circuits in vivo. Trends in Molecular Medicine, 17(4), 197.
    Cascella, R., & Cecchi, C. (2021). Calcium dyshomeostasis in Alzheimer’s disease pathogenesis. International Journal of Molecular Sciences, 22(9), 4914.
    Clapham, D. E. (2007). Calcium Signaling. Cell, 131(6), 1047–1058.
    Decaen, P. G., Delling, M., Vien, T. N., & Clapham, D. E. (2013). Direct recording and molecular identification of the calcium channel of primary cilia. Nature, 504(7479), 315–318.
    Gao, R., Gao, X., Xia, J., Tian, Y., Barrett, J. E., Dai, Y., & Hu, H. (2013). Potent analgesic effects of a store-operated calcium channel inhibitor. Pain, 154(10), 2034–2044.
    Ghosh, S. (2019). Cisplatin: The first metal based anticancer drug. Bioorganic Chemistry, 88.
    Goto, H., Inoko, A., & Inagaki, M. (2013). Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cellular and Molecular Life Sciences, 70(20), 3893.
    Gradilone, S. A., Masyuk, A. I., Splinter, P. L., Banales, J. M., Huang, B. Q., Tietz, P. S., Masyuk, T. v., & LaRusso, N. F. (2007). Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proceedings of the National Academy of Sciences of the United States of America, 104(48), 19138–19143.
    Kischel, P., Girault, A., Rodat-Despoix, L., Chamlali, M., Radoslavova, S., Daya, H. A., Lefebvre, T., Foulon, A., Rybarczyk, P., Hague, F., Dhennin-Duthille, I., Gautier, M., & Ouadid-Ahidouch, H. (2019). Ion channels: New actors playing in chemotherapeutic resistance. Cancers, 11(3), 376.
    Kleinlogel, S., Feldbauer, K., Dempski, R. E., Fotis, H., Wood, P. G., Bamann, C., & Bamberg, E. (2011). Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nature Neuroscience, 14(4), 513–518.
    Masoud, V., & Pagès, G. (2017). Targeted therapies in breast cancer: New challenges to fight against resistance. World Journal of Clinical Oncology, 8(2), 120–134.
    Masyuk, A. I., Gradilone, S. A., & Larusso, N. F. (2014). Calcium signaling in cilia and ciliary-mediated intracellular calcium signaling: Are they independent or coordinated molecular events? Hepatology, 60(5), 1783–1785.
    Nauli, S. M., Alenghat, F. J., Luo, Y., Williams, E., Vassilev, P., Li, X., Elia, A. E. H., Lu, W., Brown, E. M., Quinn, S. J., Ingber, D. E., & Zhou, J. (2003). Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genetics, 33(2), 129–137.
    Nitiss, J. L. (2009). Targeting DNA topoisomerase II in cancer chemotherapy. Nature Reviews. Cancer, 9(5), 338.
    Plotnikova, O. V., Pugacheva, E. N., Dunbrack, R. L., & Golemis, E. A. (2010). Rapid calcium-dependent activation of Aurora-A kinase. Nature Communications, 1(6), 1.
    Prevarskaya, N., Ouadid-Ahidouch, H., Skryma, R., & Shuba, Y. (2014). Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1638), 20130097.
    Satir, P., Pedersen, L. B., & Christensen, S. T. (2010). The primary cilium at a glance. Journal of Cell Science, 123(Pt 4), 499–503.
    Seeley, E. S., & Nachury, M. V. (2010). The perennial organelle: assembly and disassembly of the primary cilium. Journal of Cell Science, 123(Pt 4), 511–518.
    Spasic, M., & Jacobs, C. R. (2017). Lengthening primary cilia enhances cellular mechanosensitivity. European Cells & Materials, 33, 158.
    Stewart, T. A., Yapa, K. T. D. S., & Monteith, G. R. (2015). Altered calcium signaling in cancer cells. Biochimica et Biophysica Acta - Biomembranes, 1848(10), 2502–2511.
    Sun, X., Wei, Q., Cheng, J., Bian, Y., Tian, C., Hu, Y., & Li, H. (2017). Enhanced Stim1 expression is associated with acquired chemo-resistance of cisplatin in osteosarcoma cells. Human Cell, 30(3), 216–225.
    Tierney, A. J., Leonard, R. C. F., Taylor, J., Closs, S. J., Chetty, U., & Rodger, A. (1991). Side effects expected and experienced by women receiving chemotherapy for breast cancer. British Medical Journal, 302(6771), 272.
    Tonelli, F. M. P., Santos, A. K., Gomes, K. N., Ladeira, L. O., Resende, R. R., Gomes, D. A., & da Silva, S. L. (2012). Stem cells and calcium signaling. Advances in Experimental Medicine and Biology, 740, 891.
    Waks, A. G., & Winer, E. P. (2019). Breast cancer treatment: A review. JAMA, 321(3), 288–300.
    Xie, J., Pan, H., Yao, J., Zhou, Y., & Han, W. (2016). SOCE and cancer: Recent progress and new perspectives. International Journal of Cancer, 138(9), 2067.

    下載圖示 校內:2025-01-01公開
    校外:2025-01-01公開
    QR CODE