簡易檢索 / 詳目顯示

研究生: 賴昱元
Lai, Yu-Yuan
論文名稱: 丙烷層流火焰速度之直管測量與分析
Measurements and Analysis of Propane Lanminar Flame Speed in Straight Tube
指導教授: 袁曉峰
Yuan, Hsiao-Feng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 丙烷一氧化碳混合燃氣層流火焰速度
外文關鍵詞: propane, laminar flame speed
相關次數: 點閱:71下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 丙烷為液化石油氣中的主要成分,且具有在相同質量時所釋放熱能比一般燃料油大以及與其他一級燃油(甲烷、乙烷除外)釋熱值相同時,所排放的二氧化碳較少等特性;一氧化碳為氣化生質能之主要可燃成份之一,如能了解其混合燃燒特性對於未來使用氣化生質能及降低對石油之依賴會有很大幫助。本論文主要針對丙烷搭配一氧化碳之混合燃氣進行研究,使用自行設計的直管系統進行火焰觀察,並以多點量測技術混合早期單點量測技術,量測在常溫常壓下等當量比(ψ=1.0)與不同混合比例之火焰傳遞速度、層流火焰速度變化。實驗觀察顯示火焰傳遞速度與層流火焰速度均隨著CO混合率([CO]/([C3H8]+[CO]))增加而加速,而火焰傳遞速度是在丙烷混合至CO混合率85%時達到最大值;進一步增加一氧化碳時,火焰速度則開始下降。火焰傳遞面積也會跟著一氧化碳混合量增加而變大,在CO混合率85%受到的熱傳效應與浮力效應的影響,火焰傳遞面積亦會發展到最大值。本研究利用Chemkin 3.6搭配Gri-Mech 3.0反應機構模擬火焰反應以進行靈敏度分析,分析顯示混合CO使丙烷火焰中自由基量增加及火焰溫度提昇使得層流火焰速度加速,而當CO混合率80%時,系統中H之總生成量開始降低,使層流火焰速度開始減速。

    Propane (C3H8) is the major component in LPG. It possesses high heat content per unit mass while a low CO2 emission per unit heat release. Carbon monoxide (CO) is the main combustible component in fuel gases from biomass gasification. To fully utilize the gasified products from biomass, a detailed understanding of the combustion characteristics of the mixtures of the two may is important in order to reduce our future dependence on cruel oil. This thesis research focused on the combustion of the mixtures of propane and carbon monoxide. By using a self-designed tube method, the flame propagation speeds in the tube were measured. Coupled with the flame area estimation from multiple points observation of flame front, the laminar flame speeds were deduced at stoichiometric combustion (ψ= 1.0) of propane and carbon monoxide. The experimental results indicated that the flame propagation speeds as well as the deduced laminar flame speeds increased initially with the amount of carbon monoxide in the mixtures, and, a peak propagation speed and a peak flame speed were observed at CO mixture ratio([CO]/([C3H8]+[CO])) at 80% and 85%, respectively. Further increase CO mixture ratio, the flame speed started to drop. The observed flame area also increased with increasing CO mixture ratio. Caused by the heat transfer and buoyancy effects, the flame areas were also showed a peak value at 85% CO mixture ratio. In conjunction with GRI-3.0 mechanism, detailed reaction kinetic modeling of the mixtures was performed using Chemkin 3.6. The results showed that the mixing of CO into C3H8 increased the amount of free radicals in the flame, and the flame temperature raise as well to make the laminar flame speed increase. However, mixtures with CO mixture ratio higher than 80%, the production of H atom in the system begins to decrease, resulting to lower the laminar flame speeds.

    摘要.............................................................................................................I Abstract.................................................................................................... III 目錄......................................................................................................... V 表目錄......................................................................................................VII 圖目錄.....................................................................................................VIII 第一章 導論............................................................................................1 1-1 前言..............................................................................................1 1-2 火焰速度量測技術.......................................................................4 1-3 研究動機與目的...........................................................................8 第二章 文獻回顧與火焰速度影響因素................................................9 2-1 文獻回顧.......................................................................................9 2-2 火焰速度影響因素.....................................................................11 第三章 實驗設備與分析......................................................................13 3-1 實驗設備.....................................................................................13 3-2 實驗步驟.....................................................................................15 3-3 實驗分析.....................................................................................16 第四章 實驗結果與分析討論..............................................................20 4-1 一氧化碳比例對於火焰傳遞速度影響.....................................20 4-2 一氧化碳比例對火焰面積的影響.............................................21 4-3 一氧化碳比例對於火焰速度影響.............................................22 4-4 數值模擬層流火焰速度與文獻比對.........................................23 4-5 C3H8/CO反應機構探討..............................................................25 4-6誤差分析………………………………………………………...29 第五章 結論與未來工作......................................................................31 5-1 結論.............................................................................................31 5-2 未來工作.....................................................................................33 參考文獻..................................................................................................34 表..............................................................................................................36 圖..............................................................................................................40 附錄A…………………………………………………………………..79 附錄B…………………………………………………………………..81 附錄C…………………………………………………………………..85 附錄D…………………………………………………………………..92 附錄E…………………………………………………………………..96

    [1] 經濟部能源局網站(www.moeaboe.tw),98年國內能供需概況
    [2] 廢棄物能源利用技術開發與推廣計畫,經濟部能源局委辦,財團法人工業技術研究院執行,93年
    [3] K.K. Kuo, PRINCIPLES OF COMBUSTION, SECOND EDITION Chapter 5, Wiley-interscience, 2005
    [4] E. Mallard and H. L. LeChatelier, Ann. Mines 4:379, 1883
    [5] V. Karpor, A. LipatniKov and V. Zimont, Twenty-Sixth International Symposium on Comubsiton, 1996
    [6] Abdel-Gayed, R. G., and D. Bradley, Philosophical Transactions of the Royal Society, A301 (1457):1, 1981
    [7] N.A. Al-Dabbagh, and G.E. Andrews, Combustion and Flame 55:31-52, 1984
    [8] G.E. Andrews, D. Bradley, Combustion and Flame, 18:133-153, 1972
    [9] J. Natarajan, T. Lieuwen and J. Seitzman, Combustion and Flame, 151:104-119, 2007
    [10] Powling, J., “A new burner method for the determination of low burner velocities and limits of inflammability” Fuel 28:25, 1949
    [11] J. P. Botha, D. B. Spalding, “The laminar flame speed of propane/air mixtures with heat extraction from the flame”, 1954
    [12] F.N. Egolfopoulos, H. Zhang, and Z. Zhang, Combustion and Flame, 109:237-252, 1997
    [13] F.N. Egolfopoulos, P. Cho, C.K. Law, Combustion and Flame, 76:375-391, 1989
    [14] R.J. Kee, J.F. Grcar, M.D. Smoke, and J.A. Miller, Sandia Repot SAND85-8240, 1985
    [15] Warnatz J., Combustion Chemistry (W.C. Gardiner, Jr., Ed.), Springer-Verlag, New York, p.197, 1984
    [16] M. Ilbas, A.P. Crayford, I. Yılmaza, P.J. Bowen, N. Syred, International Journal of Hydrogen Energy, 31:1768-1779, 2006
    [17] Khizer Saeed, C.R. Stone, Combustion and Flame, 139:152-166, 2004
    [18] H.N. Phylakton, G.E. Andrews, and P. Herath, Journal of Loss Prevention in the Process Industries, 3:355-364, 1990
    [19] H.F. Coward and F.J. Hartwell, Journal of the Chemical society, 2676-2684, 1932
    [20] 王煥清, CH4/CO/AIR混合燃氣之火焰速度分析, 碩士論文, 成功大學, 2010
    [21] G. Yu, C.K. Law, C.K. Wu, Combustion and Flame, 63:339-347, 1986
    [22] B.E. Milton, and J.C. Keck, Combustion and Flame, 58:13-22,1984
    [23] C.K. Law, and O.C. Kown, International Journal of Hydrogen Energy, 29:867-879, 2004
    [24] T.G. Scholte, P.B. Vaags, Combustion and Flame, 3:503-510, 1959
    [25] T.G. Scholte, P.B. Vaags, Combustion and Flame, 3:511-524, 1959
    [26] C.M. Velopoulos and F.N. Egolfoulos, Twenty-Fifth Symposium (International) on Combustion/The Combustion Institute, 1317-1323, 1994
    [27] B. Lewis, “Discussion” Selected Combustion Problem, AGARD, p.177, 1954
    [28] A. M. Kanury, Introduction to Combustion Phenomena, Chapter 8, Gordon and Breach, New York, 1975
    [29] T.W. Reynolds, and M. Gerstein, Third Symposium (International) on Combustion/The Combustion Institute, p.190-194, 1949
    [30] C. Tanford, and R.N. Pease, Journal of Chemical Physics, vol.15 P.431, 1947
    [31] C.-Y. Wu, Y.-C. Chao, T.S. Cheng, C.-P. Chen, C.-T. Ho, Combustion and Flame, 156:362-373, 2009

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE