| 研究生: |
王祥合 Wang, Hsiang-Ho |
|---|---|
| 論文名稱: |
MCM-22沸石觸媒的合成與其催化三酸甘油酯轉酯化反應之研究 Synthesis of Zeolite MCM-22 for Catalyzed Transesterification of Triglycerides for Biodiesel |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 生質柴油 、轉酯化 、離子交換 、沸石 、MCM-22沸石 |
| 外文關鍵詞: | Biodiesel, transesterification, ion exchange, zeolite, zeolite MCM-22 |
| 相關次數: | 點閱:89 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現代人類社會的文明與科技的發展仰賴大量的能源供給,其中最重要的便是化石燃料,而大量地開發與使用化石能源卻逐漸引發各種問題,包含能源缺乏和溫室效應,嚴重影響人類一般生活與經濟活動,因此,尋求可行性的再生能源已成為非常重要且迫切的議題。其中生質能源中的生質酒精與生質柴油具有替代傳統汽油與柴油的潛力,因此受到廣泛的注意與討論。
生質柴油為一種替代石化柴油之能源,主要利用化學轉酯化技術將植物或是動物中的油脂轉化為物理及化學性質都與傳統柴油相當類似的脂肪酸烷酯類,在轉酯化反應進行時,適當的催化劑可以明顯提高反應的速率,縮短反應時間,因此對於催化劑的選擇在轉酯化反應時相當重要,考慮到反應後分離產物的簡易和方便回收觸媒,在本實驗中選用異相的固體觸媒來進行轉酯化反應。
本研究主要以MCM-22沸石 (zeolite MCM-22) 來作為轉酯化反應的觸媒,然而在未經改質過的MCM-22沸石的催化轉酯化的效果有限,因此實驗中先將沸石進行改質,利用離子交換的方式,將金屬離子擔載於觸媒表面上來增加其反應活性,以達到較好的轉酯化反應效率,藉由改變不同鹼金屬的來源、濃度、pH值和離子交換時間,來探討其對轉酯化反應的影響。此外,改變反應的各項條件,包含觸媒和反應物甲醇的使用量、反應溫度、攪拌速率和含油酸比例,探討觸媒的催化活性。
從實驗的結果可得知,經1A族離子改質過後的MCM-22沸石具有不錯的催化能力,可以在反應2小時內,產率達到90%以上,而且可以重複使用2到3次。而在含有5%油酸的情況下,使用經10 wt%氫氧化鈉離子交換0.5小時之後的MCM-22沸石來進行轉酯化反應,可以在5小時之內到達90%左右的產率,代表實驗中所製備的MCM-22沸石可以應用在低品質油料的轉酯化反應上。
The rapid development of technology has pushed more demands in energy that is mainly supplied from fossil fuels. However, the extensive consumption of fossil energies not only leads to grave environmental problems, but also seriously affects human’s daily life and economic activities. Therefore, it is critical to realize the use of renewable energies. With biomass origins, bioethanol and biodiesel are promising alternative energies, worthy of being studied. Biodiesel is a mixture of alkyl esters, which is commonly produced by catalyzed transesterification of triglycerides in excess methanol. Addition of suitable catalyst in transesterification can significantly improve the reaction rate. In order to separate and recover the spent catalysts more easily, solid catalyst is chosen for the transesterification reaction. In this study, Zeolite MCM-22 is chosen as the catalyst in transesterification. Before transesterification reaction, it is necessary to modify zeolite MCM-22 by ion exchange method to increase its catalytic activity. Parameters which affect transesterification such as the alkali metal source, concentration, pH value and ion exchange time would be investigated. Moreover, the reaction conditions including the amount of catalyst and methanol, the reaction temperature, stirring rate, and the ratio of oleic acid would be also discussed. The conversion of triglycerides to biodiesel could reach 97.4% in 1 h in the presence of zeolite MCM-22 ion-exchanged with 10 wt%-eq. NaOH for 0.5 h. Catalytic performance of zeolite MCM-22 in transesterification still sustain good catalytic effect at least for three batch cycles.
Ahmad, A.L., Yasin, N.H.M., Derek, C.J.C., Lim, J.K., Microalgae as a sustainable energy source for biodiesel production, Renewable and Sustainable Energy Reviews, 15, 584-593 (2011).
Alptekin, E., Canakci, M., Characterization of the key fuel properties of methyl ester–diesel fuel blends, Fuel, 88, 75-80 (2009).
Antolin, G., Tinaut, F.V., Briceno, Y., Castano, V., Perez, C., Ramirez, A.I., Optimisation of biodiesel production by sunflower oil transesterification, Bioresource technology, 83, 111-114 (2002).
ASTM, D6751-08 Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels, D6751-08, (2008).
Atabani, A.E., Silitonga, A.S., Badruddin, I.A., Mahlia, T.M.I., Masjuki, H.H., Mekhilef, S., A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renewable and Sustainable Energy Reviews, 16, 2070-2093 (2012).
Atadashi, I.M., Aroua, M.K., Aziz, A.A., High quality biodiesel and its diesel engine application, Renewable and Sustainable Energy Reviews, 14, 1999-2008 (2010).
Auerbach, S.M., Carrado, K.A., P.K., D., Handbook of Zeolite Science and Technology, Marcel Dekker, Inc., 2003.
Azócar, L., Ciudad, G., Heipieper, H.J., Muñoz, R., Navia, R., Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock, Bioscience and Bioengineering, 109, 609-614 (2010).
Balat, M., Potential alternatives to edible oils for biodiesel production - A review of current work, Energy Conversion and Management, 52, 1479-1492 (2011).
Balat, M., Balat, H., Progress in biodiesel processing, Applied Energy, 87, 1815-1835 (2010).
Bekkum, H.v., Flanigen, E.M., Jacobs, P.A., Jansen, J.C., Introduction to Zeolite Science and Practice, Elsevier, 2001.
Chai, F., Cao, F.H., Zhai, F.Y., Chen, Y., Wang, X.H., Su, Z.M., Transesterification of vegetable oil to biodiesel using a heteropolyacid solid catalyst, Advanced Synthesis and Catalysis, 349, 1057-1065 (2007).
Corma, A., Corell, C., Pérez-Pariente, J., Synthesis and characterization of the MCM-22 zeolite, Zeolites, 15, 2-8 (1995).
Delitala, C., Alba, M.D., Becerro, A.I., Delpiano, D., Meloni, D., Musu, E., Ferino, I., Synthesis of MCM-22 zeolites of different Si/Al ratio and their structural, morphological and textural characterisation, Microporous and Mesoporous Materials, 118, 1-10 (2009).
Demirbas, A., Biodiesel production from vegetable oils by supercritical methanol, Scientific and Industrial Research, 64, 858-865 (2005).
Demirbas, A., Importance of biodiesel as transportation fuel, Energy Policy, 35, 4661-4670 (2007).
Demirbas, A., Relationships derived from physical properties of vegetable oil and biodiesel fuels, Fuel, 87, 1743-1748 (2008).
Demirbas, A., Political, economic and environmental impacts of biofuels, Applied Energy, 86, 108-117 (2009).
Deng, X., Fang, Z., Liu, Y.H., Yu, C.L., Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst, Energy, 36, 777-784 (2011).
Fernando, S., Karra, P., Hernandez, R., Jha, S.K., Effect of incompletely converted soybean oil on biodiesel quality, Energy, 32, 844-851 (2007).
Filemon, J., Biofuels from plant oils, ASEAN Foundation, 2010.
Freedman, B., Butterfield, R.O., Pryde, E.H., Transesterification kinetics of soybean oil, American Oil Chemists Society, 63, 1375-1380 (1986).
Freedman, B., Pryde, E.H., Mounts, T.L., Variables affecting the yields of fatty esters from transesterified vegetable oils, American Oil Chemists Society, 61, 1638-1643 (1984).
Gelbard, G., Bres, O., Vargas, R.M., Vielfaure, F., Schuchardt, U.F., H-1 nuclear-magnetic-resonance determination of the yield of the transesterification of rapeseed oil with methanol, American Oil Chemists Society, 72, 1239-1241 (1995).
Gerpen, J.V., Biodiesel processing and production, Fuel Processing Technology, 86, 1097-1107 (2005).
Guray, I., Warzywoda, J., Bac, N., Sacco, A., Synthesis of zeolite MCM-22 under rotating and static conditions, Microporous and Mesoporous Materials, 31, 241-251 (1999).
Harwood, H.J., Oleochemicals as a fuel: Mechanical and economic feasibility, American Oil Chemists Society, 61, 315-324 (1984).
Helwani, Z., Othman, M.R., Aziz, N., Kim, J., Fernando, W.J.N., Solid heterogeneous catalysts for transesterification of triglycerides with methanol, Applied Catalysis A: General, 363, 1-10 (2009).
Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., Natarajan, M., Review of biodiesel composition, properties, and specifications, Renewable and Sustainable Energy Reviews, 16, 143-169 (2012).
Jain, S., Sharma, M.P., Prospects of biodiesel from Jatropha in India, Renewable and Sustainable Energy Reviews, 14, 763-771 (2010).
Kafuku, G., Mbarawa, M., Biodiesel production from Croton megalocarpus oil and its process optimization, Fuel, 89, 2556-2560 (2010).
Keera, S.T., El Sabagh, S.M., Taman, A.R., Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst, Fuel, 90, 42-47 (2011).
Lawton, S., Leonowicz, M.E., Partridge, R., Chu, P., Rubin, M.K., Twelve-ring pockets on the external surface of MCM-22 crystals, Microporous and Mesoporous Materials, 23, 109-117 (1998).
Leonowicz, M.E., Lawton, J.A., Lawton, S.L., Rubin, M.K., MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems, Science (New York, N.Y.), 264, 1910-1913 (1994).
Lim, S., Teong, L.K., Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview, Renewable and Sustainable Energy Reviews, 14, 938-954 (2010).
Liu, X., He, H., Wang, Y., Zhu, S., Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst, Catalysis Communications, 8, 1107-1111 (2007).
Lotero, E., Liu, Y.J., Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G., Synthesis of biodiesel via acid catalysis, Industrial & Engineering Chemistry Research, 44, 5353-5363 (2005).
Ma, F., Hanna, M.A., Biodiesel production: a review, Bioresource technology, 70, 1-15 (1999).
Marques, A.L.S., Monteiro, J.L.F., Pastore, H.O., Static crystallization of zeolites MCM-22 and MCM-49, Microporous and Mesoporous Materials, 32, 131-145 (1999).
McBain, J.W., The Sorption of Gases and Vapours by Solids, George Rutledge and Sons Ltd, 1932.
Meher, L., Vidyasagar, D., Naik, S., Technical aspects of biodiesel production by transesterification, Renewable and Sustainable Energy Reviews, 10, 248-268 (2006).
Mittelbach, M., Diesel fuel derived from vegetable oils .6. Specifications and quality control of biodiesel, Bioresource technology, 56, 7-11 (1996).
Moser, B.R., Biodiesel production, properties, and feedstocks, In Vitro Cellular & Developmental Biology - Plant, 45, 229-266 (2009).
Moser, B.R., Vaughn, S.F., Coriander seed oil methyl esters as biodiesel fuel: Unique fatty acid composition and excellent oxidative stability, Biomass Bioenerg., 34, 550-558 (2010).
Murugesan, A., Umarani, C., Chinnusamy, T.R., Krishnan, M., Subramanian, R., Neduzchezhain, N., Production and analysis of bio-diesel from non-edible oils, Renewable and Sustainable Energy Reviews, 13, 825-834 (2009).
Niwa, M., Katada, N., Okumura, K., Characterization and Design of Zeolite Catalysts, Springer, 2010.
R. Ravishankar, D.B., N.E. Jacob, S. Sivasanker, Characterization and catalytic properties of zeolite MCM-22, Microporous Materials, 4, 83-93 (1995).
Sabudak, T., Yildiz, M., Biodiesel production from waste frying oils and its quality control, Waste management, 30, 799-803 (2010).
Saka, S., Kusdiana, D., Biodiesel fuel from rapeseed oil as prepared in supercritical methanol, Fuel, 80, 225-231 (2001).
Schuchardt, U., Sercheli, R., Vargas, R.M., Transesterification of vegetable oils, Brazilian Chemical Society, 9, 199-210 (1998).
Schwab, A.W., Dykstra, G.J., Selke, E., Sorenson, S.C., Pryde, E.H., Diesel fuel from thermal decomposition of soybean oil, American Oil Chemists Society, 65, 1781-1786 (1988).
Shahid, E.M., Jamal, Y., Production of biodiesel, Renewable and Sustainable Energy Reviews, 15, 4732-4745 (2011).
Sharma, Y.C., Singh, B., Development of biodiesel current scenario, Renewable and Sustainable Energy Reviews, 13, 1646-1651 (2009).
Silitonga, A.S., Atabani, A.E., Mahlia, T.M.I., Masjuki, H.H., Badruddin, I.A., Mekhilef, S., A review on prospect of Jatropha curcas for biodiesel in Indonesia, Renewable and Sustainable Energy Reviews, 15, 3733-3756 (2011).
Srivastava, A., Prasad, R., Triglycerides based diesel fuels, Renewable and Sustainable Energy Reviews, 4, 111-133 (2000).
Szostak, R., Molecular Sieves - Principles of Synthesis and Identification, VAN NOSTRAND REINHILD, 1989.
Vuono, D., Pasqua, L., Testa, F., Aiello, R., Fonseca, A., Korányi, T.I., Nagy, J.B., Influence of NaOH and KOH on the synthesis of MCM-22 and MCM-49 zeolites, Microporous and Mesoporous Materials, 97, 78-87 (2006).
Wang, Y.Y., Đăng, T.H., Chen, B.H., Lee, D.J., Transesterification of Triolein to Biodiesel Using Sodium-Loaded Catalysts Prepared from Zeolites, Industrial & Engineering Chemistry Research, 51, 9959-9965 (2012).
Wu, Y., Ren, X., Lu, Y., Wang, J., Crystallization and morphology of zeolite MCM-22 influenced by various conditions in the static hydrothermal synthesis, Microporous and Mesoporous Materials, 112, 138-146 (2008).
Xue, J.L., Grift, T.E., Hansen, A.C., Effect of biodiesel on engine performances and emissions, Renewable and Sustainable Energy Reviews, 15, 1098-1116 (2011).
Yang, R., Su, M., Zhang, J., Jin, F., Zha, C., Li, M., Hao, X., Biodiesel production from rubber seed oil using poly (sodium acrylate) supporting NaOH as a water-resistant catalyst, Bioresource technology, 102, 2665-2671 (2011).
Yang, R.T., Gas Separation by Adsorption Processes, Imperial College Press, 1997.
Yusuf, N.N.A.N., Kamarudin, S.K., Yaakub, Z., Overview on the current trends in biodiesel production, Energy Conversion and Management, 52, 2741-2751 (2011).
Ziejewski, M., Goettler, H., Pratt, G., Comparative analysis of the long-term performance of a diesel engine on vegetable oil based alternative fuels, Society of Automotive Engineers, (1986).
吳榮宗, 工業觸媒概論, 國興出版社, 1989.
呂怡貞, 沸石吸附,髒空氣OUT!, 科學人雜誌, (2012).
宋勇徵, 生質柴油國外發展演進, 台肥季刊, (2006).
李秉傑, 邱宏明, 王奕凱合譯, 非均勻系催化原理與應用, 勃海堂文化公司, 1988.
周昕妤, 應用擔載Na+的Y型沸石觸媒於三酸甘油酯轉酯化反應以製備生質柴油之研究, 國立成功大學化學工程學系碩士論文, (2012).
英國石油公司, BP Statistical Review of World Energy, June 2014, (2014).
粘志遠, 以擔載鹼金屬的Y型沸石觸媒於轉酯化反應生產生質柴油之研究, 國立成功大學化學工程學系碩士論文, (2013).
經濟部投資業務處, 生質能產業分析及投資機會, 2007.
趙桂蓉, 冒泡泡的分子篩─沸石在觸媒界的應用, 科學月刊雜誌社, 1990.
劉文宗, 生質柴油發展與工業化設計, 永續產業發展雙月刊, 32-39 (2007).
蔡詩珊, 淺談生質能, 綠基會通訊, (2008).
盧文章, 生質柴油發展之契機與挑戰, 中華生質能源學會, 2006.