簡易檢索 / 詳目顯示

研究生: 羅聖能
Lo, San-Ren
論文名稱: 干擾生存因子對EB病毒感染的巴氏淋巴癌之影響
Survival factor interference in Epstein-Barr virus-positive Burkitt’s lymphomas
指導教授: 張文粲
Chang, Wen-Tsan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 94
中文關鍵詞: EB病毒巴氏淋巴癌核醣核酸干擾EB病毒核抗原1
外文關鍵詞: Epstein-Barr virus, EBV, EBNA1, Burkitt's lymphoma, RNAi, siRNA
相關次數: 點閱:111下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   EB病毒(Epstein-Barr Virus, EBV)是遍佈世界各地的人類疱疹病毒之一員,已證實與多數的腫瘤和淋巴相關疾病的發生關係密切;如同巴氏淋巴瘤(Burkitt’s lymphoma,BL),鼻咽癌(nasopharyngeal carcinoma,NPC),何杰金氏疾病(Hodgkin’s disease),和傳染性單核球增多症(infectious mononucleosis)等,且具有高度潛伏的能力。EB病毒引起的致病機轉包括逃脫免疫系統的偵測及促使細胞處於不死的狀態,而這些現象與病毒產生的蛋白質有高度關聯。以前的研究指出破壞這些病毒的蛋白質會抑制病毒複製及細胞轉型(transformation)的能力,意謂著這些病毒蛋白是具有作為治療目標的發展潛力。潛伏的EB病毒感染以及相關的惡性腫瘤生成都需要EB病毒核抗原1(EBNA1)。有研究指出破壞EBNA1的功能確實能使誘發伯金氏淋巴癌細胞產生凋亡(apoptosis),意謂著EBNA1可能是伯金氏淋巴癌細胞的一個生存因子。所以EBNA1在EB病毒引發的伯金氏淋巴癌的惡化或維持上是絕對重要的樞軸角色。因此,有效抑制EBNA1的功能對EB病毒所形成的惡性腫瘤的治療上將會是相當有用的。而我們使用一個有效DNA vector-based siRNA表現系統和有效率的siRNA篩選策略,找到兩個極為有效的siRNA分子, 能夠有效地執行序列專一性的抑制EBNA1的表現。而在BHK和HEK293細胞中,同步暫時轉染目標基因和siRNA表現的載體,在西方墨點及免疫染色分析結果皆顯示,有效的siRNA可以降低EBNA1生成超過90%。免疫螢光染色配合螢光影像進一步確認有siRNA表現的細胞(表現綠色螢光的細胞)並沒有EBNA1的表現。而利用EBNA1能夠反向活化帶有oriP序列之啟動子的轉錄活性,我們構築了一個含有oriP的冷光報告基因載體。在BHK和HEK293細胞中,我們的確觀察到這個現象。進一步的,當我們將siRNA表現的載體以及報告基因載體共同轉染入穩定表現EBNA1的BHK細胞中,發現最佳的siRNA其抑制效果到達五成左右。而我們也針對EBV-positive B淋巴球的EBNA1,在表現量以及序列上進行分析,提供日後之參考。再者我們已經成功的發展出腺病毒以及反轉錄病毒的載體系統以期達到最好的轉染效率。

      Epstein-Barr virus (EBV), a world-wide human herpes virus, is highly associated with an increasing number of tumors and lymphoid diseases, such as Burkitt’s lymphoma (BL), nasopharyngeal carcinoma (NPC), Hodgkin’s disease, and infectious mononucleosis, and is able to establish life-long persistent infection. The EBV induced pathogenesis is strongly associated with viral proteins that contribute to cell immortalization and immune evasion. Previous studies have shown that disruptions of these viral proteins result in inhibitions of viral replication or transforming abilities, suggesting that these proteins are potential candidates as therapeutic targets. EBV nuclear antigen 1 (EBNA1) is required for maintenance of latent EBV infection and is essential for EBV-associated malignancies. It has been shown that disruption of EBNA1 causes apoptosis in EBV-positive BL cells, suggesting that EBNA1 serves as a survival factor in these cells. EBNA1 may, therefore, play a pivotal role in the onset, progression or maintenance of BL. Efficient inhibition of EBNA1’s function would likely prove useful in the therapy of EBV associated malignancies. Using an effective DNA vector-based siRNA expression system and efficient active siRNA screening strategy, we have identified two extremely potent siRNA molecules that can effectively trigger sequence-specific inhibition of EBNA1 expression. Transient co-transfection of target and siRNA-expression vectors into BHK and HEK293 cells caused a more than 90% reduction in EBNA1 production in both western blot and immunohistochemistry. It was further confirmed by fluorescent image that EGFP-carry cells as siRNA-expressing cells showed no EBNA1 detected by immunostaining. In addition, EBNA1 can transactivate promoter transcription in an orip-dependent way BHK and HEK293 cells. When we co-transfect siRNA-expressing vectors and reporter plamids into EBNA1 stable line, siA1-3 also inhibits reporter activity about 50%. Furthermore, we have successfully developed two viral vector, adenoviral and retroviral vectors, expect to achieve the best transfection efficiency.

    中文摘要------------------------------------------------------------------------1 英文摘要------------------------------------------------------------------------3 誌謝----------------------------------------------------------------------------5 目錄----------------------------------------------------------------------------6 圖表目錄-----------------------------------------------------------------------10 第一章 緒論 EB病毒的歷史----------------------------------------------------------------11 EB病毒分類及組成構造--------------------------------------------------------11 EB病毒的生活史--------------------------------------------------------------12 相關疾病--------------------------------------------------------------------14 病毒之核抗原1 ( EBNA1 )-----------------------------------------------------15 巴氏淋巴癌與EB病毒之關係----------------------------------------------------17 目前的巴氏淋巴癌之治療------------------------------------------------------19 核醣核酸干擾(RNA interference, RNAi)的發現--------------------------------20 RNAi的機制------------------------------------------------------------------21 以載體系統表現siRNA---------------------------------------------------------21 RNAi的應用------------------------------------------------------------------22 實際運用—siRNA的序列的挑選及RNAi的抑制效率之定量---------------------------23 第二章 材料方法 實驗材料 勝任細胞菌株----------------------------------------------------------------25 限制酶----------------------------------------------------------------------25 化學試劑--------------------------------------------------------------------25 細菌用培養液----------------------------------------------------------------27 細胞用的培養液及緩衝液------------------------------------------------------27 保存plasmid與一般cloning過程所需的緩衝液------------------------------------29 硫酸十二酯鈉聚丙胺凝膠電泳法------------------------------------------------29 西方點墨法所需要的緩衝液----------------------------------------------------31 儀器設備--------------------------------------------------------------------33 廠商網址--------------------------------------------------------------------33 細胞株的相關實驗 實驗細胞株------------------------------------------------------------------36 繼代細胞--------------------------------------------------------------------37 凍細胞----------------------------------------------------------------------37 解凍細胞--------------------------------------------------------------------38 轉染------------------------------------------------------------------------38 冷光基因活性測定------------------------------------------------------------39 蛋白質定量------------------------------------------------------------------39 免疫染色分析----------------------------------------------------------------40 生產腺病毒------------------------------------------------------------------41 生產反轉錄病毒--------------------------------------------------------------43 質體的構築及相關方法 限制酶切割質體DNA-----------------------------------------------------------43 質體DNA的凝膠電泳-----------------------------------------------------------44 質體DNA去磷酸化反應---------------------------------------------------------44 質體DNA之補齊反應-----------------------------------------------------------45 質體DNA的回收---------------------------------------------------------------45 Annealing-------------------------------------------------------------------45 接合作用 (ligation)---------------------------------------------------------46 形質轉移 (transformation)---------------------------------------------------46 小量質體製備(Small-scall preparations of plasmid DNA)-----------------------46 大量質體製備(Large-scall preparations of plasmid DNA)-----------------------47 去氧核糖核酸、核糖核酸濃度的測定--------------------------------------------48 核酸定序分析 (DNA sequencing)-----------------------------------------------49 勝任細胞 (competent cell)的製備---------------------------------------------49 聚合酶連鎖反應 (Polymerase chain reaction, PCR)-----------------------------49 苯酚-氯仿萃取法 (Phenol-chloroform extraction)------------------------------50 乾燥DNA---------------------------------------------------------------------50 實驗所需之引子(primer)----------------------------------------------------50 實驗質體構築之方法----------------------------------------------------------50 第三章 實驗結果 利用前篩選系統挑選EBNA1有效的siRNA------------------------------------------54 以siRNA抑制EBNA1之表現------------------------------------------------------56 確定EBNA1之核定位-----------------------------------------------------------56 以免疫染色法呈現siRNA的抑制效果---------------------------------------------56 表現Dominant-negative EBNA1-------------------------------------------------57 用siRNA抑制EBNA1的反向活化轉錄之能力----------------------------------------57 四株B淋巴細胞的EBNA1之分析--------------------------------------------------58 病毒載體系統運送siRNA-------------------------------------------------------58 第四章 實驗討論 siRNA優於EBNA1的Dominant negative突變---------------------------------------60 前篩系統的優缺點------------------------------------------------------------60 用siRNA抑制EBNA1-liciferase及EBNA1蛋白質生成--------------------------------60 EBNA1的功能分析-------------------------------------------------------------63 用siRNA抑制EBNA1的反向活化轉錄之能力----------------------------------------63 比較標的淋巴球的EBNA1-------------------------------------------------------64 病毒載體系統----------------------------------------------------------------64 未來的巴氏淋巴癌的治療------------------------------------------------------65 參考文獻-----------------------------------------------------------------------66 實驗附圖-----------------------------------------------------------------------76 附圖及附表---------------------------------------------------------------------90 作者自述-----------------------------------------------------------------------94

    Adams, A. (1987) Replication of latent Epstein-Barr virus genomes in Raji cells. J. Virol. 61: 1743-1746.
    Adelman, Z.N., Sanchez-Vargas, I., Travanty, E.A., Carlson, J.O., Beaty, B.J., Blair, C.D., and Olson, K.E. (2002) RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. J. Virol. 76: 12925-12933.
    Ambinder, R.F., Mullen, M.A., Chang, Y.N., Hayward, G.S., and Hayward, S.D. (1991) Functionaldomains of Epstein-Barr virus nuclear antigen EBNA-1. J. Virol. 65: 1466-1478.
    Ashrafi, K., Chang, F.Y., Watts, J.L., Fraser, A.G., Kamath, R.S., Ahringer, J., and Ruvkun, G. (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421: 268-272.
    Baer, R., Bankier, A., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., Hatfull, G., Hudson G.S., Satchwell, S.C., Seguin, C., and et al. (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310: 207-211.
    Brummelkamp, T.R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550-553.
    Bodary, S.C., and McLean, J.W. (1990) The integrin beta 1 subunit associates with the vitronectin receptor alpha v subunit to form a novel vitronectin receptor in a human embryonic kidney cell line. J. Biol. Chem. 265: 5938-5941.
    Boxer L. M., and Dang, C.V. (2001) Translocations involving c-myc and c-myc function. Oncogene 20;5595-5610.
    Burke, A.P., Yen, T.S., Shekitka, K.M. and Sobin, L.H. (1990) Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod. Pathol. 3: 377-380.
    Burkitt, D.A. (1958) A sarcoma involving the jaws in African children. Brit. J. Surg. 45: 218-223.
    Caplen, N.J., Zheng, Z., Falgout, B., Morgan, R.A. (2002) Inhibition of viral gene expression and replication in mosquito cells by dsRNA-triggered RNA interference. Mol. Ther. 6: 243-251.
    Ceccarelli, D., and Frappier, L. (1998) Separation of the DNA replication and transactivation activities of EBNA-1, the origin binding protein of Epstein-Barr virus. Gene Ther. Mol. Biol. 3: 1-10.
    Chi, J.T., Chang, H.Y., Wang, N.N., Chang, D.S., Dunphy, N., Brown, P.O. (2003) Genomewide view of gene silencing by small interfering RNAs. Proc. Nat. Acad. Sci. USA 100: 6343–6346.
    Drotar, M.E., Silva, S., Barone, E., Campbell, D., Tsimbouri, P., Jurvansu, J., Bhatia, P., Klein, G., Wilson, J.B. (2003) Epstein-Barr virus nuclear antigen-1 and Myc cooperate in lymphomagenesis. Int. J. Cancer 106:388-395.
    Dykxhoorn, D.M., Novina, C.D., Sharp, P.A. (2003) Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell. Biol. 4: 457-467.
    Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494-498.
    Elbashir, S.M., Harborth, J., Weber, K., Tuschl, T. (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 199-213.
    Elbashir, S.M., Lendeckel, W., Tuschl, T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15: 188-200.
    Elbashir, SM., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20: 6877-6888.
    Evens, A.M., and Gordon, L.I. (2002) Burkitt's and Burkitt-like lymphoma. Curr. Treat. Options Oncol. 3: 291-305.
    Epstein, M.A., Barr, Y.M. (1964) Cultivation in vitro of human lymphoblast from Burkitt’s malignant lymphoma. Lancet 1: 252-253.
    Epstein, M.A., Achong, B.G., and Barr, Y.M. (1964) Viral particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1: 702-703.
    Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811.
    Gitlin, L., Karelsky, S., Andino, R. (2002) Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418: 430-434.
    Gahn, T.A. and Sugden, B. (1995) An EBNA-1-dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of Epstein-Barr virus LMP gene. J. Virol. 69:2633-2636.
    Ge, Q., McManus, M.T., Nguyen, T., Shen, C.H., Sharp, P.A., Eisen, H.N., and Chen, J. (2003) RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. USA 100: 2718-2723.
    Gitlin, L., Andino, R. (2002) Nucleic acid-based immune system: the antiviral potential of mammalian RNA silencing. J. Virol. 77: 7159-7165.
    Gratama, J.W. and Emberg, I. (1995) Molecular epidemiology of Epstein-Barr virus infection. Adv. Cancer. Res. 67:197-255.
    Greenspan, J.S., Greenspan, D., Lennette, E.T., Abrams, D.I., Conant, M.A., Petersen, V., and Freese, U.K. (1985) Replication of Epstein-Barr virus within the epithelial cells of oral “hairy“ leukoplakia, an AIDS-associated lesion. N. Engl. J Med. 313: 1564-1571.
    Hannon, G.J. RNA interference. (2002) Nature 418: 244–51.
    Helen, G. and Helen, W. (1966) Immunofluorecence in cells derived from Burkitt’s lymphoma. J. Bacteriol. 91: 1248-1256.
    Jacque, J.M., Triques, K., Stevenson, M. (2002) Modulation of HIV-1 replication by RNA interference. Nature 418: 435-438.
    Jeffrey, I., and Cohen, M.D. (2000) Epstein–Barr virus infection. N. Engl. J. Med. 343: 481-492.
    Jiang, M. and Milner, J. (2002) Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21, 6041–6048.
    Jones, J.F., Shurin, S., Abranowaky, C., Tubbs, R.R., Sciotto, C.G., Wahl, R., Sands, J., Gottman, D., Ktaz, B.Z. and Sklar, J. (1988) T-cell lymphoma containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N. Engl. J Med. 318: 733-741.
    Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le, Bot. N., Moreno, S., Sohrmann, M., Welchman, D.P., Zipperlen, P., and Ahringer, J. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421: 231-237.
    Kapadia, S.B., Brideau-Andersen, A., Chisari, F.V. (2002) Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Natl. Acad. Sci. USA 100: 2014-2018.
    Klein, G., Lindahl, T., Jondal, M., Leibold, W., Menezes, J., Nilsson, K., and Sundstrom, C. (1974) Continuous lymphoid cell lines with characteristics of B cells (bone-marrow-derived), lacking the Epstein-Barr virus genome and derived from three human lymphomas. Proc. Natl. Acad. Sci. U S A. 71:3283-3286.
    Kieff E, and A B Rickinson. Epstein-Barr virus and its replication. In D. Knipe and P. M. Howley (ed.), Fields virology, 2001; 2: 2511–2573. Lippincott Williams & Wilkins, Philadelphia, Pa.
    Kieff, E. (1996) Epstein–Barr virus and its replication, in Virology, 3rd edn (Fields B, Knipe D, eds) pp. 2343–2396. Lippincott-Raven Publishers, Philadelphia, PA.
    Kieff, E., Dambaugh, T., Heller, M., King, W., Cheng, A., van Santen, V., Hummel, M., Beisel, C., Fennewald, S., Hennessy, K., and Heineman, T. (1982) The biology and chemistry of Epstein-Barr virus. J. Infect. Dis. 146: 506-517.
    Kikuta, H., Taguchi, Y., Tomizawa, K., Kijima, K., Kawamura, N., Ihizaka, A., Sakiya, Y., Matsumoto, S., Imai, S., Kinoshita, T., and et al. (1988) Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333: 455-457.
    Kirchmaier, A.L., and Sugden, B. (1997) Dominant negative inhibitors of EBNA-1 of Epstein-Barr virus. J. Virol. 71: 1766-1775.
    Kumar, R., Conklin, D.S., Mittal, V. (2003) High-throughput selection of effective RNAi probes for gene silencing. Genome Res. 13:2333-2340.
    Lee, N.S., Dohjima, T., Bauer, G., Li, H., Li, M.J., Ehsani, A., Salvaterra, P., and Rossi, J. (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20: 500-505.
    Li, Q., Spriggs, M.K., Kovats, S., Turk, S.M., Comeau, M.R., Nepom, B., Hutt-Fletcher, L.M. (1997) Epstein-Barr irus uses HLA class II as a cofactor for infection of B lymphocytes. J. Virol. 71: 4657-4662.
    Mackey, D., Sugden, B. (1997) Studies on the mechanism of DNA linking by Epstein-Barr virus nuclear antigen 1. J. Biol. Chem. 272: 29873-29879.
    Macpherson, I. and Stoker, M. (1962) Polyoma transformation of hamster cell clones--an investigation of genetic factors affecting cell competence. Virology 16:147-51.
    Martinez, L.A., Naguibneva, I., Lehrmann, H., Vervisch, A., Tchenio, T., Lozano, G., and Harel-Bellan, A. (2002) Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc. Natl. Acad. Sci. USA 99: 14849–14854.
    Martinez, M.A., Gutierrez, A., Armand-Ugon, M., Blanco, J., Parera, M., Gomez, J., Clotet, B., and Este, J.A. (2002) Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. Aids 16: 2385–2390.
    McCaffrey, A.P., Nakai, H., Pandey, K., Huang, Z., Salazar, F.H., Xu, H., Wieland, S.F., Marion, P.L., and Kay, M.A. (2003) Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol. 21: 639-644.
    McCaffrey, A.P., Meuse, L., Pham, T.T., Meuse, L., Pham, T.T., Conklin, D.S., Hannon, G.J., Kay, M.A. (2002) RNA interference in adult mice. Nature 418: 38–39.
    Montgomery, M.K., Xu, S., Fire, A. (1998) RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95: 15502-15507.
    Min, K.W., Holmquist, S., Peiper, S.C. and O’Leary, T.L. (1991) Poorly differentiated adenocarcinoma with lymphoid stroma (lymphoepithelioma-like carcinoma)of the stomach. Report of three cases with Epstein-Barr virus genomes demonstrated by the polymerase chain reaction. Am. J. Clin. Pathol. 96: 219-227.
    Miller, G., and Lipman, M. (1973) Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc. Natl. Acad. Sci. U S A. 70: 190-194.
    Nadkarni JS, Nadkarni JJ, Clifford P, Manolov G, Fenyo EM, and Klein E. (1969) Characteristics of new cell lines derived from Burkitt lymphomas. Cancer 23:64-79.
    Nemerow, G.R., Moore, M.D., Cooper, N.R. (1990) Structure and function of the B-lymphocyte Epstein-Barr virus/C3d receptor. Adv. Cancer Res. 54: 273-300.
    Nilsson, J.A., Cleveland, J.L. ( 2003) Myc pathways provoking cell suicide and cancer. Oncogene 22:9007-9021.
    Novina, C.D., Murray, M.F., Dykxhoorn, D.M., Beresford, P.J., Riess, J., Lee, S.K., Collman, R.G., Lieberman, J., Shankar, P., and Sharp, P.A. (2002) siRNA-directed inhibition of HIV-1 infection. Nat. Med. 8: 681–686.
    Paul, C.P., Good, P.D., Winer, I., Engelke, D.R. (2002) Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20: 505-508.
    Randall, G., Grakoui, A., Rice, C.M. (2003) Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc. Natl. Acad. Sci. USA 100: 235–240.
    Reisman, D. and Sugden, B. (1986) Trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Mol. Cell Biol. 6: 3838-3846.
    Rowe, M., Rowe, D.T., Gregory, C.D., Young, L.S., Farrell, P.J., Rupani, H., Rickinson, A.B. (1987) Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO J. 6: 2743-51.
    Scherr, M., Battmer, K., Winkler, T., Heidenreich, O., Ganser, A., and Eder, M. (2003) Specific inhibition of brc-abl gene expression by small interfering RNA. Blood 101, 1566–1569.
    Shire, K., Ceccarelli, D.F., Avolio, H.T., Frappier, L. (1999) EBP2, a human protein that interacts with sequences of the Epstein-Barr virus nuclear antigen 1 important for plasmid maintenance. J. Virol. 73: 2587-2595.
    Shuey, D.J., McCallus, D.E., Giordano, T. (2002) RNAi: gene-silencing in therapeutic intervention. Drug. Discov. Today 7: 1040-1046.
    Sixbey, J.W., Vesterinen, E.H., Nedrud, J.G., Raab-Traub, N., Walton, L.A., and Pagano, J.S. (1983) Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature 306: 480-483.
    Snudden, D.K., Hearing, J., Smith, P.R., Grasser, F.A., Griffin, B.E. (1994) EBNA-1, the major nuclear antigen of Epstein-Barr virus, resembles `RGG' RNA binding proteins. EMBO J. 13: 4840-4847.
    Sugden, B., Warren, N. (1989) A promoter of Epstein-Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. J. Virol. 63:2644-2649.
    Sugden, B., Warren, N. (1988) Plasmid origin of replication of Epstein-Barr virus, oriP, does not limit replication in cis. Mol. Biol. Med. 5: 85-94.
    Sui, G., Soohoo, C., Affar, el B., Gay, F., Shi., Y., Forrester, W.C., and Shi, Y. (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99: 5515-5520.
    Thorley-Lawson, D. A. and Gross, A. (2004) Persistence of the Epstein-Barr virus and the origins of Associated lymphomas. N. Engl. J. Med. 350: 1328-1337
    Tuschl, T. (2002) Functional genomics: RNA sets the standard. Nature 421: 220-221.
    Vose, J.M. (1995) Treatment for non-hodgkin's lymphoma in relapse — what are the alternatives? N. Engl. J Med. 333:1565-1566.
    Weiss, L.M., Movahed, L.A., Warnke, R.A., and Sklar, J. (1989) Detection of Epstein-Barr viral genomes in Reed-Stemberg cells of Hodgkin’s disease. N. Engl. J Med. 320: 502-506.
    Wilda, M., Fuchs, U., Wossmann, W., and Borkhardt, A. (2002) Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 21, 5716–5724.
    Wilson, J.A., Jayasena, S., Khvorova, A., Sabatinos, S., Rodrigue-Gervais, I.G., Arya, S., Sarangi, F., Harris-Brandts, M., Beaulieu, S., Richardson, C.D. (2003) RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc. Natl. Acad. Sci. USA 100: 2783-2788.
    Wilson, J.B. and Levine, A.J. (1992) The oncogenic potential of Epstein-Barr virus nuclear antigen 1 in transgenic mice. Curr. Top. Microbiol. Immunol. 182: 375-384.
    Wolf, J.B. and Seibel, R. (1984) Benign and malignant disease caused by EBV. J Invest. Dermatol. 83: 88s-95s.
    Wysokenski, D.A. and Yates, J.L. (1989) Multiple EBNA1-binding sites are required to from an EBNA1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein-Barr virus. J. Virol. 63:2657-2666.
    Yates, J.L., and Camiolo, S.M. (1988) Dissection of DNA replication and enhancer activation functions of Epstein-Barr virus nuclear antigen 1. Cancer Cells 6: 197-205.
    Yates, J., Warren N. and Sugden, B. (1985) Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313: 812-815.
    Yates, J., Warren, N., Reisman, D. and Sugden, B. (1984) A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plamids in latently infected cells. Proc. Natl. Acad. Sci. USA 81:3806-3810.
    Yin, Y., Manoury, B., and Fahraeus, R. (2003) Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science 301: 1371-1374.
    Ziegler, J.L., Drew, W.L., Miner, R.C., Mintz, L., Rosenbaum, E., Gershow, J., Lennette, E.T., Greenspan, J., Shillitoe, E., Beckstead, J., Casavant, C., and Yamamoto, K. (1982) Outbreak of Burkitt;’s-like lymphoma in homosexual men. Lancet 2: 631-633.
    Zamore, P.D., Tuschl, T., Sharp, P.A., Bartel, D.P. (2002) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101: 25-33.

    下載圖示 校內:2005-08-17公開
    校外:2005-08-17公開
    QR CODE