| 研究生: |
蔡孟希 Tsai, Men-Hsi |
|---|---|
| 論文名稱: |
反應式離子蝕刻應用在氮化鎵材料上之研究 Application of Reactive-Ion Etching (RIE) on GaN Material |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 反應式離子蝕刻、氮化鎵 |
| 外文關鍵詞: | RIE(Reactive Ion Etching), GaN |
| 相關次數: | 點閱:118 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
在本文中,將對於氮化鎵(GaN)的反應式離子蝕刻(RIE)的四個重要參數:腔體壓力、蝕刻功率、反應氣體流量與種類,作一系列的整理與分析。可以發現到腔體壓力為控制蝕刻平坦度與均勻度的主控因素,而蝕刻功率則為蝕刻速率的重要參數。此外,在低流量的三氯化硼可以擁有比較高的蝕刻速率,在腔體壓力為50 mtorr,蝕刻功率為200瓦,三氯化硼硫量為5sccm下可以達到100nm/min。
利用光激光譜( PL )及傳輸線模型( TLM )量測,可以發現在高瓦數的蝕刻會伴隨來表面缺陷,其特徵接觸電阻(Specific contact resistance)由2.17×10-5提高到3.79×10-3Ω-cm2,而其發光強度也會隨著蝕刻瓦數的增加而降低。然而,在經過900℃熱回火5分鐘與光輔助化學濕式蝕刻處理後其特徵接觸電組可以改善分別為9.84×10-5與3.41×10-4Ω-cm2。
Abstract
In this dissertation, we compare the four important parameters (pressure, etched power, flow rate of reactive gas, BCl3) for RIE (Reactive Ion Etching), and analyze the influence of these parameters on etched rate and smooth etched profiles.
We detected that pressure is the most important parameter for the smooth etched profiles, and the etched power is for the etched rate. In addition, the low flow rate of BCl3 induces a high etched rate. For the system operated at 50 mtorr and 200 watts, the hightest etch rate of 151 nm/min was found by adjusting BCl3 flow rate to 5 sccm.
The ion-bombardment induced surface damage with high etched power plasma was surveyed in detail by PL measurement and TLM. The specific contact resistance was noted to increase from 2.17×10-5 to 3..79×10-3Ω-cm2, and the PL peak intensity decreased with higher etch power. In addition, we performed damage recovery with RTA at 900 ℃ for 5 minutes and PEC process to improve the surface dislocation. After the damage recovery process, PL peak intensity was effectively enhanced, and the specific contact resistance improved to 9.84×10-5Ω-cm2 with the RTA at 900 ℃ for 5 minutes, and 3.41×10-4Ω-cm2 with PEC process.
[1] H. P. Maruska, J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN”, Appl. Phys. Lett. 15, 367 (1969).
[2] M. Asif Khan, M. Shatalov, H. P. Maruska, H. M. Wang and E. Kuokstis, ‘’III-Nitride UV Devices”, Jpn. J. Appl. Phys., Vol. 44, No. 10, pp. 7191-7206 (2005)
[3] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Volume 64, Issue 13, pp. 1687-1689 (1994).
[4] S. Nakamura and G. Fasol, “The Blue Laser Diodes”, Springer-Verlag, Heidelberg, chap2 (1997).
[5] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T.Yamada, and T. Mukai, "Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes ", Jpn. J. Appl. Phy, Vol.34, pp. 1332-1335 (1995).
[6] T. Mukai, D. Morita, and S. Nakamura, "High-power UV InGaN/AlGaN double-heterostructure LEDs " J. Cryst. Growth, vol. 189-190, pp. 778-781 (1998).
[7] T. Mukai, H. Narimatsu, and S. Nakamura, "Amber InGaN-Based Light-Emitting Diodes Operable at High Ambient Temperatures ", Jpn. J. Appl. Phy., vol. 37, pp. 479-481 (1998).
[8] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN -based laser diodes grown on GaN substrates”, Appl. Phys. Lett, Volume 72, Issue 16, pp. 2014-2016 (1998).
[9] Strategies Unlimited, “Gallium Nitride-Technology Status and Applications Analysis”, pp. 3, (1997).
[10] Strategies Unlimited, “Gallium Nitride-Technology Status and Applications Analysis”, pp. 21, (1997).
[11] L.A. Coldren, S.W. Corzine, “Diode lasers and photonic integrated circuits”, Wiley, (1995)
[12] Jacques I. Pankove, Theodore D. Moustakas, “Gallium Nitride (GaN) / Semiconductorsand Semimetals”, Academic Press, Vol. 50, pp.1-6, (1998).
[13] S. Yoshida, S. Misawa, and S. Gonda, “Properties of AlxGa1-xN films prepared by reactive molecular beam epitaxy”, J. Appl. Phys, vol. 53, pp. 6844-6846 (1983)
[14] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, “Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN (0<X<0.4) films grown on sapphire substrate by MOVPE”, J. Cryst. Growth, vol. 98, pp. 209-219 (1989).
[15] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett. 48, pp. 353-355, (1986).
[16] S. Nakamura, “GaN Growth Using GaN Buffer Layer”, Jpn. J. Appl. Phys. , Vol. 30, pp. 1705-1707, (1991).
[17] S. Nakamura and G. Fasol, “The Blue Laser Diodes”, Springer-Verlag, Heidelberg, chap2, (1997).
[18] G. S. Nakamura, ” InGaN-based violet laser diodes” Semicond. Sci. Technol., vol.14, pp. 27-40, (1999).
[19] S. Wolf, “Silicon Processing for the VLSI Era”, vol.1 Ch.15, lattice Press, 1986.
[20] Sorab k. Ghandhi, “VLSI Fabrication Principles”, John Wiley & Sons, pp.589, (1994).1j4
[21] S.J. Pearton, J.C. Zolper, R.J. Shul, F. Ren, “GaN: Processing, defects,and device”, Appl. Phys. Rev. vol. 86, iss. 1, pp. 1-78, (1999).
[22] C. Youtsey, I. Adesida, “Smooth n-type GaN surfaces by photoenhanced wet etching”, Appl. Phys. Lett, vol.72, num.5, pp. 560-562, (1998).
[23] J. A. Bardwell, J. B. Webb, H. Tang, J. Fraser, and S. Moisa, “Ultraviolet photoenhanced wet etching of GaN in K2S2O8 solution” J. Appl. Phys, vol.89, pp. 4142-4149, (2001).
[24] C. Y. Chang , S. M. Sze, “ULSI Technology”, McGraw Hill, (1996).
[25] M. R. Stephen, J. C. Jerome, D. W. William, “Handbook of Plasma Processing Technology”, Noyes Publications, (1990).
[26] D.G. Kent, K.P. LEE, A.P. Zhang, B. Luo, M.E. Overberg, C.R. Abernathy, F.Ren, K.D. Mackenzie, S.J. Pearton, Y. Nakagawa, ” Electrical effects of N2 plasma exposure on dry-etch damage in p- and n-GaN Schottky diodes”, Solid-State Electronics, vol. 45,pp. 1837-1842, (2001).
[27] Z.Z. Chen, Z.X. Qin, Y.Z. Tong, X.M. Ding, X.D. Hu, T.J. Yu, Z.J. Yang, G.Y. Zhang, “Etching damage and its recovery in n-GaN by reactive ionetching”, Physica B: Condensed Matter, vol. 334, pp. 188-192, (2003).
[28] E. Kay, “Methods and Materials in Microelectronic Technology”, Plenum, New York, (1984).
[29] G. Franz, C. Hoyler, and J. Kaindl, “Reactive Ion etching GaAs and AlAs: kinetics and process monitoring”, J. vac. sci. tech., vol. 14, iss. 1, pp. 126-131, (1996).
[30] M. E. Lin, Z. F. Fan, Z. Ma, L. H. Allen, and H. Morkoc, “Reactive ion etchingof GaN using BCl3”, Appl. Phys. Lett., Vol. 64, iss. 7, pp. 887-888 (1994).
[31] G. F. McLane and L. Casas, “High etch of GaN with magnetron reactive ionetching in BCl3 plasmas”, Appl. Phys. Lett., vol. 66, no. 44, pp. 3328-3330, (1995).
[32] M. R. Stephen, J. C. Jerome, D. W. William, “Handbook of Plasma Processing Technology”, Noyes Publications, (1990).
[33] 紀國鐘, 蘇炎坤, “光電半導體技術手冊”, 台灣電子材料與元件協會, (2002).
[34] R.C. Hibbeler, “Mechanics of materials”, Prentice Hall, (2000)
[35] D. Basak, T. Nakanishi, S. Sakai, “Reactive ion etching of GaN using BCl3,BCl3/Arand BCl3 / N2 gas plasmas”, Solid-State Electronics, Vol. 44, pp. 725-728, (2000).
[36] H.F. Honga, C.K. Chao, J.I. Chyi , Y.C. Tzeng, “Reactive ion etching of GaN/InGaN using BCl3 plasma”, Materials Chemistry and Physics, vol. 77, pp. 411–415, (2002).
[37] C. Juang and J. K. Hsu, “Photoluminescence of CF4/O2 reactive ion etched In0.53 Ga0.47As surfaces”, J. Appl. Phys. vol. 72, iss. 2, pp. 684-687, (1992).
[38] K. Ohtsuka and T. Ohishi, “Photoluminescence characterization of InP surface reactive ion etched by a gas mixture of ethane and hydrogen”, J. Appl. Phy, Vol. 70, pp. 2361-2365, (1991).
[39] S. J. Pearton, U. K. Chakrabarit, and F. A. Baiocchi, “Electrical and structural changes in the near surface of reactively ion etched InP”, Appl. Phys. Lett. Vol. 55, iss. 16, pp. 1633-1635, (1989).
[40] J. Y. Chen, C. J. Pan, G. C. Chi, “Electrical and optical changes in the near surface of reactively ion etched n-GaN”, Solid-State Electronics, vol. 43, pp. 649-652, (1999).
[41] F.A. Khan, L. Zhou, V. Kumar, I. Adesida, R. Okojie, “High rate etching of AlN using BCl3/Cl2/Ar inductively coupled plasma”, Materials Science and Engineering , vol. 95, pp21-54 (2002)