簡易檢索 / 詳目顯示

研究生: 劉柏宗
Liu, Bo-Zong
論文名稱: 利用噴流床製備碳化鉻/氧化鋁奈米複合材料及火花電漿燒結體之微結構與機械性質研究
Microstructure and Mechanical Properties of SPS Sintered Cr3C2/Al2O3 Nanocomposites Synthesized in Spouted Bed
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 95
中文關鍵詞: 奈米複合材料碳化鉻噴流床火花電漿燒結奈米壓痕法
外文關鍵詞: Nanocomposite, Chromium carbide, Spouted bed, Spark plasma sintering, Nanoindentation
相關次數: 點閱:105下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用有機金屬化學氣相沈積法(MOCVD)配合噴流床(Spouted Bed)技術,藉由裂解前驅物六羰化鉻Cr(CO)6可裂成氧化鉻(Cr2O3)、介穩相碳化鉻(CrC1-x)和碳(C),沉積在噴流床腔體中流動的氧化鋁粉末上,製備出Cr2O3/Al2O3奈米複合粉體,而碳在燒結過程會與氧化鉻反應而生成碳化鉻(Cr3C2),進而製備出Cr3C2/Al2O3奈米複合陶瓷,並探討奈米複合陶瓷之相成份,微結構以及機械性質。

    本研究指出在火花電漿燒結法(SPS)中,於高溫為1200℃的條件下將形成氧化鉻/氧化鋁的複合燒結體;當溫度到達1350℃的溫度時則可成功製備出緻密化的碳化鉻/氧化鋁奈米複合燒結體。Cr3C2/Al2O3奈米複合陶瓷的強度、硬度、韌性均較單質氧化鋁提升許多,其強度約可提升至780 MPa;硬度可提高至25.6 GPa;韌化方面則觀察出階梯狀破斷面與沿、穿晶混和的模式,使得韌性約提高至4.8 MPa‧m1/2。在奈米壓痕測試中,碳化鉻/氧化鋁奈米複合燒結體其楊氏係數皆高於純氧化鋁,且碳化鉻的添加可延遲奈米複合燒結體之破壞行為。楊氏係數驟然下降之負載,為燒結體產生破壞行為而產生塑性變形,且塑性功/總功之比例為最大比值。

    Metal-organic chemical vapor deposition (MOCVD) and spouted bed were employed to prepare the nanoscaled particles deposited on alumina. The amorphous Cr2O3 deposited on the Al2O3 ceramic powder by means of pyrolysis of Cr(CO)6 at 300℃. The composition of decomposed Cr(CO)6 includes Cr2O3, CrC1-x, and C. Cr2O3 reacts with carbon to transform into chromium carbide. The Cr3C2/Al2O3 nanocomposites were fabricated using a spark plasma sintering (SPS) technique at 1350℃, and their densification behavior and mechanical properties were investigated.

    Using spark plasma sintering, the Cr2O3/Al2O3 nanocomposites were formed at 1200 ℃. But the successful densification of Cr3C2/Al2O3 nanocomposites was obtained at a temperature of 1350 ℃. Cr3C2/Al2O3 nanocomposites were found to possess microstructures of fine Cr3C2 particles dispersed within the Al2O3 matrix grains and/or at the grain boundaries. These nanocomposites exhibit an average fracture toughness of 4.8 MPa m1/2, hardness of 25.6 GPa, and flexural strength of 780 MPa compared with 3.7 MPa m1/2, 21.8 GPa, and 625 MPa for the pure Al2O3 compacts, respectively. The fracture mode changes from intergranular fracture of monolithic Al2O3 to transgranular fracture of nanocomposites, and step-wise fracture surface is also observed. From nanoindentation tests, the Young's modulus of Cr3C2/Al2O3 nanocomposites is found to be higher than pure alumina. Addition of chromium carbide can be delayed fracture of sintered. When the sintered starts fracture and plastic deformation, the elastic modulus begin to decrease and plastic work / total work ratio was the largest ratio.

    總目錄 摘要 I Abstract II 總目錄 IV 圖目錄 VIII 表目錄 XI 第一章 緒 論 1 1.1 前 言 1 1.2 研究動機與重點 2 第二章 理 論 基 礎 5 2.1 陶瓷複合材料強化機制 5 2.1.1陶瓷基複合材料強化機制 5 2.1.2 奈米陶瓷複合材料(Ceramic Nanocomposites) 9 2.1.3 陶瓷基複合材料韌化機制 11 2.2 化學氣相沉積法及噴流床 17 2.2.1 MOCVD製程之六羰化鉻探討 18 2.2.2 噴流床技術 19 2.2.3 噴流床圓錐角 21 2.3 氧化鉻與碳化鉻 21 2.4 火花電漿燒結法 22 2.4.1 火花電漿燒結簡介 22 2.4.2 火花電漿燒結的裝置 24 2.4.3 直流脈衝電流之影響 24 2.4.4 火花電漿燒結原理 26 2.5 奈米壓痕技術 26 第三章 實驗方法與步驟 32 3.1 實驗設計 32 3.2 實驗設備及合成奈米複合粉體之製程 34 3.2.1 MOCVD 與噴流床之實驗設計 34 3.2.2 實驗材料 34 3.2.3 奈米複合粉體之合成 36 3.2.4 複合粉末材料之火花電漿燒結製程 36 3.3 複合粉體之性質分析 37 3.3.1 X射線螢光分析儀測量沉積粒子量 37 3.3.2 複合粉體之相分析 37 3.3.3 複合粉體之ESCA成分分析 40 3.3.4 複合粉體之表面型態之觀察 40 3.4 燒結體的物理性質測定 41 3.4.1密度的測定 41 3.4.2 X光繞射分析 42 3.4.3 彎曲強度的測定 42 3.4.4 微硬度的測試 43 3.4.5 破壞韌性 43 3.5 燒結體之微結構觀察 44 3.5.1場發射掃瞄式電子顯微鏡(FE-SEM)試片之觀察 44 3.5.2 穿透式電子顯微鏡(TEM)試片之觀察 44 3.6 奈米壓痕試驗 45 第四章 結果與討論 47 4.1 奈米複合粉體之特性 47 4.1.1 相分析 47 4.1.2 沉積物表面型態及微結構觀察 51 4.2 碳化鉻/氧化鋁奈米複合陶瓷之性質 55 4.2.1 相分析 55 4.2.2 奈米複合陶瓷之密度 57 4.2.3 奈米複合陶瓷之收縮行為 60 4.2.4 微結構觀察 63 4.3 燒結體之機械性質 72 4.3.1 微硬度 72 4.3.2 彎曲強度 74 4.3.3 破壞韌性 76 4.3.4 奈米壓痕負載與位移之關係 77 4.3.5 彈、塑性功之行為 79 第五章 結論 86 參考文獻 88 圖目錄 Fig. 2.1 Dislocation vicinity the nanoparticle after sintering 8 Fig. 2.2 Nano-crack in the vicinity of the propagating crack tip 8 Fig. 2.3 The classification of ceramic nanocomposites 12 Fig. 2.4 Schematic diagram of internal stresses around the particles and crack propagations in the case of Al2O3-SiC 13 Fig. 2.5 Schematic diagram of internal stresses around the particles and crack propagations in the case of Al2O3-Cr3C2. 14 Fig. 2.6 Schematic of the fracture-resistance curves of the alumina-silicon carbide nanocomposite and the monolithic alumina polycrystal.[22] 15 Fig. 2.7 Schematic diagram of a spouted bed. 20 Fig. 2.8 SPS system configuration 25 Fig. 2.9 Pulsed current flow through powder particles. 25 Fig. 2.10 ON-OFF plused current path 27 Fig. 2.11 Basic mechanism of neck formation by spark plasma 27 Fig. 2.12 Schematic representation of load versus indenter displacement data for an indentation experiment. 30 Fig. 2.13 Schematic representation of a section through an indentation various quantities used in the analysis. 30 Fig. 2.14 Schematic the load versus indenter displacement represent the plastic work and elastic work. 31 Fig. 3.1 Flow chart of experiment 33 Fig. 3.2 The schematic diagram of MOCVD and spouted bed reactor 35 Fig. 3.3 Schematic the graphite mold of spark plasma sintering. 39 Fig. 3.4 The apparatus of spark plasma sintering. 39 Fig. 3.5 The apparatus of UNAT 46 Fig. 4.1 XRD patterns of as-deposited powder prepared by MOCVD in the spouted bed for different time. 48 Fig. 4.2 Photo images of (a) Al2O3 powder (b) composites powder . 48 Fig. 4.3 TEM micrograph of Cr2O3 deposited Alumina powder. (a) bright field image; (b) diffraction pattern of location Ι in (a); (c) EDS analysis of location Ι in (a) 49 Fig. 4.4 ESCA spectrum of C1s in the as-deposited powder 52 Fig. 4.5 ESCA spectrum of Cr2p in the as-deposited powder 52 Fig. 4.6 SEM images of the spouted bed powders at different time (a) pure Al2O3, (b) 30 min, and (c) 60 min (d) EDS analysis of fluidized powders . 54 Fig. 4.7 XRD patterns of the spouted bed powder sintered at (a) 1200℃(b) 1250℃(c) 1300℃(d) 1350℃ for 10 min by SPS. 56 Fig. 4.8 Photographs of composite specimen sintered at 1200-1350℃ for 10min by SPS. 56 Fig. 4.9 The apparent density of Al2O3, fluidized 30min and 60min sintered at different temperature by SPS 58 Fig. 4.10 Shrinkage behavior of Al2O3、fluidized 30min and fluidized 60min sintered at (a) 1200℃(b) 1250℃for 10min by SPS. 61 Fig. 4.11 Shrinkage behavior of Al2O3、fluidized 30min and fluidized 60min sintered at (a) 1300℃(b) 1350℃for 10min by SPS. 62 Fig. 4.12 SEM micrographs on fracture surface of (a) Al2O3 (b) fluidized 30min (c) fluidized 60min sintered at 1200℃by SPS. 64 Fig. 4.13 SEM micrographs on fracture surface of (a) Al2O3 (b) fluidized 30min (c) fluidized 60min sintered at 1250℃by SPS. 65 Fig. 4.14 SEM micrographs on fracture surface of (a) Al2O3 (b) fluidized 30min (c) fluidized 60min sintered at 1300℃by SPS. 67 Fig. 4.15 SEM micrographs on fracture surface of (a) Al2O3 (b) fluidized 60min sintered at 1350℃by SPS. 68 Fig. 4.16 TEM micrograghs of Cr3C2 /Al2O3 nanocomposites sintered at 1350℃, (a) bright field image; (b) SADP of arrow in (c) ; dislocation of arrows. 69 Fig. 4.17 SEM micrograph of the step fracture surface of Cr3C2 / Al2O3 nanocomposites sintered at 1350℃. 71 Fig. 4.18 Hardness of Al2O3、fluidized 30min and fluidized 60min sintered at (a) 1200℃(b) 1250℃(c) 1300℃ (d) 1350℃ for 10min by SPS 73 Fig. 4.19 3-point bending strength of Al2O3、fluidized 30min and fluidized 60min sintered at (a) 1200℃(b) 1250℃(c) 1300℃(d) 1350℃ for 10min by SPS. 75 Fig. 4.20 Fracture Toughness of Chromium Carbide/Alumina nanocomposites sintered at 1350℃for 10min by SPS. 78 Fig. 4.21 The load-displacement curves of (a) pure Al2O3 (b) fluidized 30min (c) fluidized 60min with the load from 300mN to 1500mN followed by SPS sintered at 1350℃. 80 Fig. 4.22 The Elastic modulus of Al2O3 and Cr3C2/ Al2O3 nanocomposites sintered at 1350℃for 10 min by SPS with the load from 300 mN to 1500 mN. 83 Fig. 4.23 Wp/Wtot of Al2O3 and Cr3C2/ Al2O3 nanocomposites at 1350℃ with the load from 300mN to 1500 mN 85 表目錄 Table 2.1 Properties of the powders used in this study 23 Table 3.1 Characteristics of Al2O3 powders (supplied by Taimei) 38 Table 4.1 The content of Al and Cr of 300℃spouted bed powder by XRF 50 Table 4.2 Density and porosity of Alumina and nanocomposites 59 Table 4.3 Contact depth of Al2O3, and Cr3C2/ Al2O3 nanocomposites sintered at 1350℃under various indentation loading. 82

    [1] Y. Wang and S.M. Hsu, “The effects of operating parameters and environment on the wear and wear transition of alumina,” Wear, 195, p90 (1996).
    [2] B.B. Ghate, W.C. Smith, C.H. Kim, D.P.H. Hasselman, and G.E. Kane, “Effect of Chromia alloying on machining performance of alumina ceramic cutting tools,” Ceramic Bulletin, 54 , p210 (1975).
    [3] 陶瓷技術手冊(下),經濟部技術處,(1994).
    [4] C.T. Fu, J.M. Wu, and A.K. Li, “Microstructure and mechanical properties of Cr3C2 particulate reinforced Al2O3 matrix composites,” J. Mater. Sci., 29, p2671 (1994).
    [5] C.T. Fu, A.K. Li, and J.M. Wu, “Effects of postsintering hot isostatic pressing processed on microstructures and mechanical properties of Al2O3-Cr3C2 composite,” Bri. Ceram. Trans., 93, p178 (1994).
    [6] M Sternitzke, “Review: Structural ceramic nanocomposites,” J. Eur. Ceram. Soc., 17, p1061 (1997).
    [7] C.C. Anya, “Microstructural nature of strengthening and toughening in Al2O3-SiC(p) nanocomposites,” J. Mat. Sci., 34, p5557 (1999).
    [8] K. Niihara, “New design concept of structural ceramics-ceramic nanocomposites,” J. Ceram. Soc. Jpn., 99, p974 (1991).
    [9] G..Y. Onada, Jr, and L.L. Hench, “Ceramic processing before firing,” Wiley, New York, p357 (1978).
    [10] E.A. Pugar, and P.E.D. Morgan, “Coupled Grain growth Effects in Al2O3/ 10 vol% ZrO2,” J. Am. Ceram. Soc., 69, pC120 (1984).
    [11] B. Caussat, F. L. Juarez , and C.Vahlas, “Hydrodynamic study of fine metallic powders in an original spouted bed contactor in view of chemical vapor deposition treatments,” Powder Techno., 165, p65 (2006).
    [12] 林浩東,氧化鋁-碳化鉻奈米複合材料的製備及其性質之研究,國立成功大學材料科學與工程學系博士論文(2006).
    [13] 呂順清,以MOCVD及碳化處理製備碳化鉻-氧化鋁奈米複合陶瓷之研究,國立成功大學材料科學與工程學系碩士論文(2006).
    [14] C.Zener, “Grains, phases, and interfaces: an interpretation of microstructure,” Trans. Am. Inst. Min. Metall. Eng., 175, p15 (1948).
    [15] N. J. Petch, “Cleavage strength of polycrystals,” J. Iron and Steel Inst. (London), 174, p25 (1953).
    [16] 納米材料奇異性,現代物理知識 中國學術期刊電子雜誌出版社(2008)
    [17] S.M. Choi ,and H. Awaji, “Nanocomposites-a new material design concept,” Sci. Tech. Adv. Mat. , 6, p2 (2005).
    [18] Martin Sternitzke, “Review:Structural Ceramic Nanocmoposites,” J. Euro. Ceram. Soc., 17, p1061 (1997).
    [19] R.W. Davidge, in: R.C. Bradt, D.P.H. Hasselman, and F.F. Lange (Eds.) , “Effect of microstructure on the mechanical properties of ceramics,” Fracture Mechanics of Ceramics vol. 2, Plenum Press, New York, p 447 ,(1973).
    [20] B. Basu, T. Venkateswaran and D. Y. Kim, “Microstructure and Properties of Spark Plasma-Sintered ZrO2–ZrB2 Nanoceramic Composites,” J. Am. Ceram. Soc. , 89, p2405 (2006).
    [21] T. Ohji, Y.K. Jeong, Y.H. Choa, and K. Niihara, “Strengthening and Toughening Mechanisms of Ceramic Nanocomposites,” J. Am. Ceram. Soc., 81, p1453 (1998).
    [22] T. Ohji, Y.K. Jeong, T. Hirano, A. Nakahira, and K. Niihara, “Particle/matrix interface and its role in creep inhibition in alumina/silicon carbide nanocomposites,” J. Am. Ceram. Soc., 79, p33 (1996).
    [23] 王世敏、許祖勛、傅晶,納米材料製備技術,化學工業出版社,北京(2001).
    [24] A.G. Evans, “The strength of brittle materials containing second phase dispersions,”. Philos. Mag., 26, p1327 (1972).
    [25] K.T.Faber, and A.G.Evans, “Crack deflection process-I. theory”. Acta Metall., 31, p565(1983).
    [26] K.T.Faber, and AG..Evans, “Crack deflection process-II. theory,” Acta Metall., 31, p577(1983).
    [27] A.G.Evans, and K.T.Faber, “Crack-growth resistance of microcracking brittle materials,”. J. Am. Ceam. Soc., 69, p255 (1984).
    [28] Juarez F, Castillo A, Pieraggi B, “Spouted bed metallorganic chemical vapor deposition of ruthenium on NiCoCrAlYTa powders,”. J. De Physique IV, 11, p1117 (2001).
    [29] M. Olazar, R. Aguado, and J. Bilbao, “Pyrolysis of sawdust in a conical spouted-bed reactor with a HZSM-5 catalyst,” AIChE J. 46, p1025 (2000).
    [30] K. Ijichi, Y. Uemura, and Y. Hatate, “Coating of particles with fine particles using a draft-tube spouted bed,”. J. Chem. Eng. Jpn., 33, p526 (2000).
    [31] M. H. Lo, and W. -C. J. Wei, “Processing and Properties of (Cr,Mo)
    Oxycarbides from MOCVD,” Appl. Oragnometal Chem., 12, p1 (1998).
    [32] J.J. Lander, and L.H. Germer, “Plating Molybdenum, Tungsten, and Chromium by Thermal Decomposition of Their Carbonyls,”. Am. Inst. Min. Metal. Eng. Tech., 14, p1 (1947).
    [33] W. Hieber, E. Romberg, and Z. Anorg. Allg. Chem., 221, p332 (1935).
    [34] 錢建嵩,流體化床技術,高立圖書有限公司(1992).
    [35] S.Takeuchi, S. Wang, and M. Rhodes, “Discrete element method simulation of three-dimensional conical-base spouted beds,”. Powder Techno., 184, p141 (2008).
    [36] X. Jian, B. Xiaojun, and W. Shining ,“Hydrodynamics,attrition and entrainment of fine particle spouting,”. J. of Chem. Industry and Engine. 54 , p590 (2003).
    [37] 黃啟祥、林江財,陶瓷技術手冊(下),經濟部技術處 (1994).
    [38] C.T. Fu, J.M. Wu, and A.K. Li, “Microstructure and mechanical properties of Cr3C2 particulate reinforced Al2O3 matrix composites,”. J. Mater. Sci., 29, p2671 (1994).
    [39] B. B. Chate, W. C. Smith, C. H. Kim, D. P. H. Hasselman, and G. E. Kane, “Effect of Chromia Alloying on Machining Performance of Alumina Ceramic Cutting Tools,”.Ceramic Bulletin, 54, p210 (1975).
    [40] T.J. Davies, H. G. Emblem, A. Harabi, C. S. Nwobodo, A. A. Oqwu, and V.Tsantzlaou,“Characterisation and properties of alumina-chrome refratories,”. Br.Ceram. Trans., 91, p71 (1992).
    [41] A.Harabi, and T. J. Davies ,“Mechanical properties of sintered alumina-chromia refractories,”. Br. Ceram. Trans, 94, p79 (1995).
    [42] M. Tokita, “Mechanism of Spark Plasma Sintering,” Sumitomo Coal Mining Company, Ltd., East Bldg. 108, Kanagawa Science Park KSP.
    [43] M. Tokita, “Trends in Advanced SPS Spark Plasma Sintering Systems and Technology,” J. Soc. Pow. Tech. Jap., 30, p790 (1993) .
    [44] Hertz, H.; Miscellaneous Papers, Macmillan, London (1896).
    [45] G. M Pharr.; W. C Oliver , and F. R. Brotzen, “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation”, J. Mater. Res. ,7, p613 (1992).
    [46] W. C. Oliver, and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7, p1564 (1992).
    [47] A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A. M. Minor, and Yu-Lin Shen, “Indentation across size scales and disciplines:Recent developments in experimentation and modeling,” Acta Mater., 55, p4015 (2007).
    [48] D. Zhang, L. Zhang, J. Guo ,and W.H. Tuan, “Direct evidence on temperature variation within ceramic powder compacts during pulse electric current sintering,” J. Am. Ceam. Soc., 89, p680 (2006).
    [49] X. Wang, S.R. Casolco, G. Xu ,and J.E. Garay, “Finite element modeling of electric current-activated sintering : The effect of coupled electrical potential temperature and stress,” Acta Mater., 55, p3611 (2007).
    [50] T. Isobe, K. Daimon , T. Sato, T. Matsubara ,Y Hikichi ,and T. Ota, “Spark plasma sintering technique for reaction sintering of Al2O3/Ni nanocomposite and its mechanical properties,” Ceram. Int. , 34, p213 (2008).
    [51] T. Ono, T. Takenoshita, H. Uchimura, and M. Kaji, “Evaluation of Fracture Toughness for Ceramic Materials by a Single-Edge- Precracked-Beam-Method,” J. Am. Ceram. Soc., 71, p328, (1988).
    [52] C. D. Wagner, W. M. Riggs, L. E. Davis, and G. F. Moulder, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation , (1979).
    [53] H. T. Lin, J. L. Huang, W. T. Lo, and W. C. J. Wei, “Investigation on Carbonizing Behaviors of Nanometer-sized Cr2O3 Particles Dispersed on Alumina Particles by MOCVD in fluidized Bed,” J. Mater. Res., 20, p2154 (2005).
    [54] J. E. Knap, B. Pesetsky, and F. N. Hill, “Vapor Plating with Dicumenechromium Preparation and Properties of the Chromium Plate,” Plating, 53, p772 (1966).
    [55] 陳志榮,納米碳化鉻/及鉬/氧化鋁基複合材料之製程與分析,國
    立台灣大學材料科學及工程學研究所(2000).
    [56] L. Carroll, M. Sternitzke, and B. Derby, “Silicon Carbide Particle Size Effects in Alumina-based Nanocomposites,” Acta Mater. 44, p4543 (1996)
    [57] N. J. Petch, “Cleavage Strength of Polycrystals,” J. Iron and Steel Inst., p17425 (1953).
    [58] H. Z. Wang, L. Gao, L. H. Gui, and J. K. Guo,”Preparation and Properties of Intragranular Al2O3-SiC Nanocomposites,” Nanostructured Materials, 10, p947 (1998).
    [59] F. Bondioli, A Ferrari, C.Leonelli, T. Manfredini, “Reaction Mechanism in Alumina/Chromia (Al2O3-Cr2O3) Solid Solution Obtained by Coprecipitation,” J.Am. Ceram. Soc. , 83, p2036 (2000).
    [60] P. K. Rajagopalan, T. S. Krishnan, and D. K. Bose, “Development of Carbothermy for the Preparation of Hepta Chromium Carbide,” J. of Alloys and Comp., 297, L1 (2000).
    [61] L. M. Foster, G. Long, and M.S. Hunter, “Reactions Between Aluminum Oxide and Carbon The Al2O3—Al4C3 Phase Diagram,” J. Am. Ceram. Soc., 39, p1 (1956).
    [62] C. H. Prescott Jr., W. B. Hincke, “The high-temperature equilibrium between aluminum oxide and carbon,” J. Am. Chem. Soc., 49, p2753 (1927).
    [63] L. C. De Jonghe, M. N. Rahaman, and C. H. Huseh, “Transient Stresses in Bimodal Compacts During Sintering,” Acta Matell., 34, p1467, (1986).
    [64] C. H. Huseh, “Sintering behavior of Powder Compacts with Multiheterogeneities,” J. Mater. Sci., 21, p2067 (1986).
    [65] J. Liu and P. Darrell Ownby, “Boron Carbide Reinforced Alumina Composites,” J. Am. Ceram. Soc., 74, p674 (1991).
    [66] Pezzotti, W. H. Muller, “Strengthening Mechanisms in Al2O3/SiC Nanocomposites,” Comput. Materials Sci., 22, p155 (2001).
    [67] J. H. Chae., K. H. Kim., Y. H. Choa, J. Matsushita ,J. W. Yoon, and K. B. Shim, “Microstructural evolution of Al2O3–SiC nanocomposites during spark plasma sintering,”J. of Alloy. Compd., 413,p259 (2006).
    [68] Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, “Spark Plasma Sintering of Alumina,” J. Am. Ceram. Soc., 85, p1921 (2002).
    [69] S. Guicciardi, D. Sciti, C. Melandri, and A. Bellosi, “Nanoindentation Characterization of Submicro- and Nano-Sized Liquid-Phase-Sintered SiC Ceramics,” J. Am. Ceram. Soc., 87, p2101 (2004).
    [70] A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A. M. Minor ,and Y.L. Shen, “Indentation across size scales and disciplines: Recent developments in experimentation and modeling,” Acta Materi., 55, p4015 (2007).
    [71] J. Gong, Z. Peng,and H. Miao, “Analysis of the nanoindentation load–displacement curves measured on high-purity fine-grained alumina,” J. Euro.. Ceram. Soc., 25, p649 (2005).
    [72] K. Zimmermann, and G. A. Schneider, “Elastic to elastic–plastic transition of Al2O3/TiC ceramics studied by nanoindentation,” J. Mater. Res., 24, p1960 (2009).
    [73] Anthony C. Fischer-Cripps, “Nanoindentation,” Spring-Verlag New York,Inc. (2002).

    下載圖示 校內:2011-07-29公開
    校外:2012-07-29公開
    QR CODE