| 研究生: |
林于娟 Lin, Yu-jiuan |
|---|---|
| 論文名稱: |
螺絲製造業搓製程油霧滴多環芳香烴碳氫化合物、金屬與反應性含氧物種特徵之研究 Characteristics of Polycyclic Aromatic Hydrocarbons, Metals, and Reactive Oxygen Species in Oil mists found in the Workplace Atmosphere of a Fastener Manufacturing Industry |
| 指導教授: |
蔡朋枝
Tsai, Peng-jr |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 活性含氧物種(ROS) 、油霧滴 、多環芳香烴碳氫化合物 、金屬元素 、螺絲製造業 、搓牙製程 、金屬加工用油(MWFs) |
| 外文關鍵詞: | Reactive Oxygen Species, Metal elements, Polycyclic aromatic hydrocarbons, Metalworking fluids, Fastener manufacturing industries, Oil mists, Threading process |
| 相關次數: | 點閱:157 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
螺絲製造過程中所使用之金屬加工用油(Metalworking Fluids, MWFs)多為循環使用,製程中會因機具碰撞或因摩擦生熱而導致之加熱-蒸發-凝結過程使MWFs產生液滴與霧滴(簡稱油霧滴)而逸散於作業環境中。MWFs成份為碳氫化合物,內含多環芳香族碳氫化合物(Polycyclic Aromatic Hydrocarbons, PAHs)、有機化合物以及金屬化合物,在循環使用的過程中可能會導致其內PAHs及金屬的累積。油霧滴暴露會造成不良健康效應,除PAHs及金屬本身外,亦可能與粒狀污染物上的活性含氧物種(reactive oxygen species, ROS)對細胞產生氧化性壓力(oxidative stress)有關。對於粒狀污染物之ROS生成機制則可能與PAHs及金屬有關。本研究目的為瞭解搓牙製程中MWFs在不同使用時間下,其PAHs與金屬含量之變化,及其對作業場所中所逸散之油霧滴、PAHs、金屬及ROS濃度之影響。本研究以八階階梯式衝擊採樣器(Marple 298)針對螺絲製造業之搓牙作業場所進行四次不同時間之區域粒徑分佈採樣。所捕集之樣本經前處理後進行PAHs、金屬與ROS分析。研究結果顯示,四次不同MWFs使用時間下油霧滴濃度皆以細微粒(佔86.0-88.6%)為主,且其粒徑分佈不會受到產率高低之影響。就不同MWFs使用時間而言,作業場所中分佈於粗粒徑(Coarse mode)之PAHs以高分子量PAHs(HMW-PAHs)為主;細粒徑(Fine mode)則以低分子量PAHs (LMW-PAHs)為主;總PAHs濃度則以Fine mode為主。作業場所中每單位油霧滴重量之總PAHs(Total-PAHs)含量隨著MWFs循環使用時間而有增加的趨勢,其中LMW-PAHs隨MWFs循環使用時間的增加而降低,但MMW-PAHs及HMW-PAHs卻呈相反趨勢,此現象與MWFs中不同分子量之PAHs濃度之變化具相同之趨勢。作業場所中每單位油霧滴重量之金屬含量會隨著MWFs循環使用時間越久而有增加的趨勢,此結果與MWFs中金屬元素濃度具有相同之趨勢。作業場所中ROS濃度會隨著MWFs使用時間越久而增加。就PAHs及金屬元素濃度分別與ROS濃度之相關性探討之,可發現結合粗粒徑及細粒徑之總PAHs濃度(C-Total-PAHs及F-Total-PAHs)可解釋作業環境中ROS濃度之變異51%;結合粗粒徑之鈉及鐵濃度(C-Na及C-Fe)則可解釋作業環境中ROS濃度之變異92%。預測模式方面,經由迴歸分析發現以產率推估作業環境中LMW-、MMW-、HMW-PAHs、金屬及ROS濃度,其解釋力分別為70.0%、78.0%、85.0%及77.0%,可知此預測模式可有效評估作業環境中LMW-、MMW-、HMW-PAHs及金屬濃度逸散情形。綜合上述之結果,可知螺絲廠搓牙製程中隨著MWFs循環使用,PAHs、金屬及ROS濃度呈現越來越高趨勢,採用空氣污染防治設備實有其必要性。
Metalworking fluids (MWFs) are used recycling in fastener manufacturing industries. Oil mists found in the workplace are formed via the impaction of MWFs and heating- evaporation- condensation process caused by the frictions of machines. MWFs are made of the hydrocarbons, containing polycyclic aromatic hydrocarbons (PAHs), organic compounds, and metal elements. Recycling of MWFs lead to the accumulation of their PAH and metal contents. Workers exposed to oil mists could cause adverse health effects. Studies have indicated that adverse health effects may derive from not only PAHs and metals but also oxidative stress, initiated by the formation of reactive oxygen species (ROS). The formation mechanism of ROS on particles may relate to PAHs and metals. The objective of this study is to determine the impact associated with the change of MWFs on oil mists, PAHs, metals and ROS concentration in the workplace at the different period of metalworking fluids in the threading process. The eight-stage cascade impacter (Marple 298) was used in static sampling to collect particle and segregate particles in sizes. The collected particles were pretreated for analyzing their chemical compositions including metals, PAHs, and ROS. The results show particle size distributions of oil mists occurred in the workplace were dominated by the fine mode (86.0-88.6%) for samples collected at the different of metalworking fluids. And particle size distributions weren’t influenced by the production rate. PAHs concentrations of coarse particles in the workplace were dominated by the HMW-PAHs at the different period of metalworking fluids; PAHs concentrations of fine particles were dominated by the LMW-PAHs; Total PAHs concentrations were dominated by the fine particles. The longer MWFs were used, more amounts of PAHs concentration were found. The longer MWFs were used, the less the amounts of LMW-PAHs concentration could be found. The longer MWFs were used, more amounts of MMW-PAHs and HMW-PAHs concentration were found. The results show the same trend with the different molecular weight PAHs in MWFs. The longer MWFs were used, more amounts of metals concentration were produced. The results have the same trend with metals concentration in MWFs. The longer MWFs were used, higher ROS concentration were produced. The relationship between the different molecular weight PAHs and metals concentrations and ROS concentrations was determined. The result found that the combination of both coarse particles and fine particles of total PAHs could explain the variations of ROS concentrations up to 51%. The combination of both coarse particles of Fe and Na could explain the variations of ROS concentrations up to 92%. By conducting regression analyses, this study found that the production rate would be able to explain the variations of LMW-, MMW-, HMW-PAHs, and metals concentrations up to 70.0%, 78.0%, and 85.0%. The above result clearly indicates that the predicable model was a useful method for assessing LMW-, MMW-, HMW-PAHs, metals and ROS concentration in the workplace. In conclusion, the longer MWFs was used, more LMW-, MMW-, HMW-PAHs, metals and ROS concentrations were produced suggesting that appropriate air pollution control devices should be used in this industry immediatedly.
Antonini JM., Clarke RW., Krishna Murthy GG... Freshly generated stainless steel welding fume induces greater lung inflammation in rats as compared to aged fume. Toxicol Lett. 98(1-2):77-86. 1998.
Au WW., Oberheitmann B., Heo MY.. Biomarker monitoring for health risk based on sensitivity to environmental mutagens. Rev on Environ Hea. 16:4164. 2001.
Audeey MP., Davide RD.. Effects of cadmium on nuclear integrity and DNA repair efficiency in the gill cells of Mytilus edulis L. Aquatic Toxicology. 57:127-137. 2002.
Baulig A., Garlatti M., Bonvallot V., Marchand A.. Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 285:671–679. 2003.
Bernstein JA., Alexis N., Baines C., Bernstein IL., Nel AE., Peden D.. Health effects of air pollution. Journal of Allergy and Clinical Immunology. 114:1116. 2004.
Bjorseth A., Ramahl T.. Sources and Emission of PAH. Handbook of Polycyclic Aromatic Hydrocarbons. Merck Dekker, Inc. New York and Basel. 1. 1983.
Bonvallot V., Baeza-Squiban A., Baulig A., Brulant S.. Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. Am. J. Respir. Cell Mol. Biol. 25:515–521. 2001.
Cathcart R., Schwiers E., Ames BN.. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem. 134:111-6. 1983.
Chan TL., D’Arcy JB., Siak J.. Size characteristics of machining fluid aerosols in industrial metalworking environment. Appl Occup Environ Hyg. 5:16270. 1990.
Chen Mei-Ru, Perng-Jy Tsai, Chih-Ching Chang, Tung-Sheng Shih,Wen-Jhy Lee, Pao-Chi Liao. Particle size distributions of oil mists in workplace atmospheres and their exposure concentrations to workers in a fastener manufacturing industry. Journal of Hazardous Materials. 146:393–398. 2007.
Cross CE., Halliwell B., Borish ET., Pryor WA.. Oxygen radicals and human disease. Ann Inter Med. 107:526-45. 1987.
Cullen MR., Balmes JR., Robins JM., Smith GJW.. Lipoid pneumonia caused by oil mist exposure from a steel rolling tandem mill. Am. J. Ind. Med. 2:51-58. 1981.
Dias JR.. Handbook of Polycyclic Hydrocarbons: Part A: Benzenoid Hydrocarbons. Elsevier. Amsterdam. 1987.
Donaldson K., Stone V., Seaton A., MacNee W.. Ambient particles inhalation and the cardiovascular system: potential mechanisms. Environ Heal Persp. 109 (S4):52327. 2001.
Eldered RA., Cahill TA., Flochini RG.. Composition of PM2.5 and PM10 Aerosols in the IMPROVE Network. Journal of Air Waste Management Association. 47:194-203. 1997.
EPA, Locating and estimating air emission from sources of polycyclic organic matter (POM). Washington DC., US Rnvironmental Protection Agency, EPA 45014:84-007. 1987.
Fubini B., Fenoglio I., Ceschino R., Ghiazza M., Martra G.. Relationship between the state of the surface of four commercial quartz flours and their biological activity in vitro and in vivo. Int. J. Hyg. Environ. Health. 207:89–104. 2004.
Gauthier SL.. Metalworking fluids: oil mist and beyond. Appl. Occup Environ Hyg. 18:818-824. 2003.
Ghio AJ., Richards JH., Carter JD., Madden MC.. Accumulation of iron in the rat lung after tracheal instillation of diesel particles. Toxicol. Pathol. 28:619–627. 2000.
Gonzalez-Flecha B.. Oxidant mechanisms in response to ambient air particles. Mol. Aspects Med. 25:169–182. 2004.
Halliwell B., Gutteridge JM., Cross CE.. Free radicals, antioxidants, and human disease: where are we now? J Lab & Clin Med. 119:598-620. 1992.
Halliwell B., Gutteridge JM.. Free Radicals in Biology and Medicine. Oxford University Press. 1999.
Halliwell B.. Reactive oxygen species in living systems: sources, biochemistry, and role in human disease. Am J Med. 91:14S-22S. 1991.
Han JY., Takeshita K., Utsumi H.. Noninvasive detection of hydroxyl radical generation in lung by diesel exhaust particles. Free Radic. Biol. Med. 30:516–525. 2001.
Hansen ES.. Mortality of mastic asphalt workers. Scand. J. Work. Environ. Health. 17:20-24. 1991.
Hasson AS., Paulson SE.. An investigation of the relationship between gas-phase and aerosol-bourne hydroperoxides in urban air. Journal of Aerosol Science. 34:459–468. 2003.
Heyder J., Gebhart G., Rudolf G., Schiller CF., Stahlofen W.. Deposition of particles in the human respiratory tract in the size range 0.00515μm. J Aero Sci. 17:81125. 1986.
Hu JJ., Dubin N., Kurland D., Ma BL., Roush GC.. The effects of hydrogen peroxide on DNA repair activities. Muta Res 336:193201. 1995.
Huang X., Frenkel K., Klein CB., Costa M.. Nickel induces increased oxidants in intact cultured mammalian cells as detected by dichlorofluorescein fluorescence. Toxicol Appl Pharmacol. 120:29-36. 1993.
Hung HF., Wang CS.. Experimental determination of reactive oxygen species in Taipei aerosols. J Aerosol Sci. 32:1201-1211. 2001.
IARC, Polynuclear aromatic compounds. Part 1. Chemical, environmental and experimental data, Office of Health and Environmental Assessment, U.S. Environmental Protection Agency. Washington DC. 1983.
James PS., Raveendra VI., Timothy EF.. Multivariate Statistical Examination of Spatial and Temporal Patters of Heavy Metal Contamination in New Bedford Harbor Marine Sediment. Environmental Science and Technology. 29:1781-1788. 1995.
Johnson RL.. Relatives effects of air pollution on lungs and heart. Circulation. 109:5-7. 2004.
Josephson J.. Polycylic Aromatic Hydrocarbons. Environ Sci Technol. 18:93. 1984.
Kawata K., Tokoo H., Shimazaki R., Okabe S.. Classification of heavy-metal toxicity by numan DNA microarray analysis. Environ Sci Technol. 41(10):3769-3774. 2007.
Kazerouni N., Thomas TL., Petralia SA., Hayes RB.. Mortality among workers exposed to cutting oil mist: update of previous reports. Am. J. Ind. Med. 38(4):410-416. 2000.
Kennedy SM., Chan-Yeung M., Teschke K., Karlen B.. Change in airway responsiveness among apprentices exposed to metalworking fluids. Am. J. Respir Crit Care. Med.159(1):87-93. 1999.
Kennedy SM., Greaves IA., Kriebel D., Eisen EA., Smith TJ., Woskie SR.. Acute pulmonary responses among automobile workers exposed to aerosols of machining fluids. Am J Ind Med. 15:627–41. 1989.
Keston AS., Branst R.. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem.11:1-5. 1965.
Kira S.,Nogami Y., Taketa K.,Ogata M.. Size-selective sampling of oil mist in air and subjective sympotoms among machine workers. IND. Health. 35/3:394-398. 1997.
Lebel CP., Ischiropoulos H., Bondy SC.. Evaluation of the probe 2', 7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol.5:227-31. 1992.
Li N., Hao M., Phalen RF., Hinds WC., Nel AE.. Particulate air pollutants and asthma, a paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin. Immunol. 109:250–265. 2003a.
Li N., Sioutas C., Cho A., Schmitz D., Misra C.. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111(4):455–460. 2003b.
Lide D.. CRC Handbook of Chemistry and Physics, 75th Ed. CRC Press. 1995.
Lotte Risom, Peter Møller, Steffen Loft. Oxidative stress-induced DNA damage by particulate air pollution. Mutation Research. 592:119–137. 2005.
Massin N., Bohadana AB., Wild P., Goutet P.. Airway responsiveness, respiratory symptoms, and exposures to soluble oil mist in mechanical workers. Occup. Environ. Med.53:748-752. 1996.
Mathews AP.. Chemical Equilibrium Analysis of Lead and Berylium Speciation in Hazardous Waste Incinerators, Proceedings of the Second International Symposium on Metals Speciation, Seperation and Recovery. 2:73-83. 1989.
Mattia CJ., LeBel CP., Bondy SC. Effects of toluene and its metabolites on cerebral reactive oxygen species generation. Biochem Pharmacol. 42:879-82. 1991.
McCord JM. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Sci. 185:529-31. 1974.
Menzie CA., Potocki BB., Santodonato J.. Exposure to carcinogenic PAHs in the environment. Environ Sci Technol. 26:1278-1284. 1992.
Michalek DJ., Hii WWS., Sun JS., Gunter KL.. Experimental and analytical efforts to characterize cutting fluid mist formation and behavior in machining. Appl Occup Envir Hyg.18:84254. 2003.
Nadon L., Siemiatycki J.. Cancer Risk Due to Occupational Exposure to Polycycllic Aromatic Hydrocarbons.Am. J. Ind. Med. 28:303-324. 1995.
Ning Li, Constantinos Sioutas, Arthur Cho, Debra Schmitz et al.. Ultrafin Particulate Pollutants Induce Oxidative Stress and Mitochondrial Damage. Environmental Health Perspectives. 111: 4. 2003.
Nisbet ICT.. Review and evaluation of the evidence for cancer associated with air pollution. Washington DC. US Rnvironmental Protection Agency. 1984.
Nriagu JO., Pacyna Jm.. Quantitative Assessnent of Worldwide Contamination of Air, Water and Solid by Trace Metals. Nature. 323:134-139. 1988.
Oudyk J., Haines AT., D’Arcy J.. Inveatigating respiratory responses to metal working fluid exposure. Appl Occup Envir Hyg. 18:939946. 2003.
Paasivirta J.. Chemical Ecotoxicolog. Lewis Publishers, Inc. 1991.
Parkinson P.. Casarett and Doull’s Toxicology, the basic science of poisons, unit 2: Disposition of toxicants. 5th Ed.. New York, Pergamon Press.. 114-125. 1992.
Penning TM., Burczynski ME., Hung CF., McCoull KD.. Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Chem Res in Toxic. 12:118. 1999.
Pope CA., Burnett RT., Thun MJ., Calle EE., Krewski D., Ito K., Thurston GD.. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 287(9):1132-1141. 2002.
Pope CA., Burnett RT., Thurston GD., Thun MJ., Calle EE., Krewski D., Godleski JJ.. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation. 109:71-77. 2004.
Pope CA.. Combustion-source particulate air pollution and human health: causal association or confounding Particulate Matter: Health and Regulatory Issue.
Pott P., Hawes, Clarke W., Collins R.. Chirurgical Observations Relative to thr Cataract, the Polypus of the Nose, the cancer of the Scrotum, the different kinds of Ruptures, and the Mortification of Toes and Feet. London. 1775.
Prahalad AK., Soukup JM., Inmon J., Willis R., Ghio AJ., Becker S., Gallagher JE.. Ambient Air Particles: Effects on Cellular Oxidant Radical Generation in Relation to Particulate Elemental Chemistry. Toxicol Appl Pharmacol. 158:81-91. 1999.
Querol X., Alastuey A.. Levels and Chemistry of Atmospheric Particulates Induced by A Spill of Heavy metal Mining Wastes in the Donana Area, Southwest Spain. Atmospheric Environment. 34:239-253. 2000.
Ricardo Queiroz Aucélio and Adilson José Curtius*. Comparative study of electrothermal atomic absorption spectrometric methods for the determination of silver in used lubricating oils. The Royal Society of Chemistry, Analyst. 125:1673–1679. 2000.
Rowley DA., Halliwell B.. Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease. Clin Sci. 64:649-53. 1983.
Simpson AT., Stear M., Groces AJ., Piney M., Bradley SD., Stagg S., Crook B.. Occupational exposure to metalworking fluid mist and sump fluid contaminants. Ann. occup. Hyg. 47:17-30. 2003.
Sørensen M., Skov H., Autrup H., Hertel O., Loft S.. Urban benzene exposure and oxidative DNA damage. Sci. Total Environ. 309:69–80. 2003.
Squadrito G.L., Cueto R., Dellinger B., Pryor WA.. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Rad. Biol. Med. 31(9):1132–1138. 2001.
Tate RM., Repine JE.. Neutrophils and the adult respiratory distress syndrome. Am Rev Respir Dis. 128:552-9. 1983.
Thornburg J., Leith D..Size distribution of mist generation during metal machining. Appl Occup Environ Hyg. 15(8): 612-628.. 2000.
Tuominen J., Salomass S., Pysalo H., Skytta E., Tikkanen L., Nurmela T., Sorsa M. et al.. Polynuclear Aromatic Hydrocarbons and genotoxicity in particulate and vapor phases of ambient air: Efect of traffic season and meteorological conditions. Environ Sci Technol. 22:1228-1234. 1988.
US EPA. Technical Support Document for HWC MACT Standards. Miscellaneous Technical Issues. Volume II. 1996.
Venkatachari P., Hopke PK., Brune WH., Ren X., Lesher R., Mao J.. Characterization of wintertime reactive oxygen species concentrations in Flushing in NewYork. Aerosol Science and Technology. 41:97–111. 2007.
Venkatachari P., Hopke PK., Grover BD., Eatough DJ.. Measurement of particle-bound reactive oxygen species in Rubidoux aerosols. Journal of Atmospheric Chemistry. 50:49–58. 2005.
Venkatachari P.. Investigation of atmospheric particle-bound reactive oxidative species (ROS): Their sources, characterization, and measurement. PhD Thesis, Clarkson University, Potsdam, NY. 2007.
Yung-Shan Lee, Pang-Wei Chen, Perng-Jy Tsai, Shu-Hui Su, Pao-Chi Liao. Proteomics analysis revealed changes in rat bronchoalveolar lavage fluid proteins associated with oil mist exposure Proteomics. 6:2236–2250. 2006.
Zacharisen MC., Barrios C., Kurup VP., Fink JN.. Effect of Endotoxin on Metal Working Fluid Induced Hypersensitivity Pneumonitis in Mice.The Journal of Allergy and Clinical Immunology. 117:S22. 2006.
吳瑞成,建立預知保養系統─油品分析,機械月刊:第24卷第9期,307-310,1998年9月。
李文智,Lo C., Noll KE., Holsen TM., Tsai TH.. The dry deposition velocities of ambients PAHs and PCBs. 第八屆空氣污染控制技術研討會論文集,中興大學,台中:507-517,1991。
林榮盛,潤滑學,全華科技圖書股份有限公司:101-104,1987年。
金屬中心ITIS計畫,2005金屬製品業年鑑-螺絲螺帽篇,高雄市:金屬工業研究發展中心,2005。
翁和傑,潤滑油污染物問題與棋清淨化技術,機械月刊:第24卷第6期,1998年6月。
郭育良等,職業病概論,華杏出版股份有限公司,1998。
經濟部,鍛造模具設計手冊,金屬工業研究發展中心:7-11,57-59,1998年。
經濟部工業局,螺絲製造業環境管理技術手冊:136-137,2000年12月。
趙克然、楊毅軍、曹道俊,氧自由基與臨床,合計書局,2003年。
賴耿陽、歐靜枝,螺紋、螺絲、螺帽,復文書局:247-254,376,1987年。
顏玉山,螺絲製造技術,全華科技圖書股份有限公司:1-10,1985年。