簡易檢索 / 詳目顯示

研究生: 徐啓昇
Hsu, Chi-Sheng
論文名稱: 以網頁式學習系統結合腦波注意力監測機制探討系統回饋型式與學生學習風格之關聯
Exploring Correlation between the Types of System Feedback and Learning Styles of Students through Web-based Learning System with Attention Monitoring
指導教授: 王維聰
Wang, Wei-Tsong
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 202
中文關鍵詞: 網頁式學習腦波生理回饋機制學習風格持續性注意力自我效能學習成效持續使用意圖
外文關鍵詞: Web-based learning, EEG biofeedback, Learning styles, Sustained attention, Self-efficacy, Learning effectiveness, Continuance intention
相關次數: 點閱:158下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   就網頁的應用面而言,近年在教育領域逐漸蓬勃興盛,且趨於普遍。網頁式學習目前頗為重視的議題是學生由於缺乏老師的即時協助,因而無法確保其學習時是否專注。近年來的研究雖然藉由實作腦波生理回饋機制,透過腦波儀偵測學生在學習時的注意力,並適時給予即時回饋以解決此議題。但統整過去的研究選擇腦波生理回饋方式的考量,卻沒有一定的決定標準。又根據過去的研究結果指出,同一種回饋方式對於不同學習風格的學生受益程度不同,甚至可能被視為學習干擾。此外,根據學者所述,自我效能據信也是線上學習主要成功的關鍵因素,而透過回饋機制可有效觸發學生的自我效能。本研究著眼於時下並無研究針對不同類別學習風格之學生較適合視覺、抑或是聽覺的腦波生理回饋方式進行探討,因而著手研究此範疇,分析不同學習風格使用不同回饋方式,其持續性注意力、自我效能、學習成效,與持續使用意圖之影響。
      本研究的實驗設計共有二階段實驗,操弄變項為四種學習風格,操作皆為腦波生理視覺負回饋機制、腦波生理聽覺負回饋機制。使用問卷調查法進行資料收集,共回收有效問卷70份,透過結構方程模式進行資料分析與驗證。研究結果顯示視覺型學習風格偏好程度愈高者,藉由視覺回饋的輔助,能夠有效提高自我效能;循序型學習風格偏好程度愈高者,藉由聽覺回饋的輔助,可同時提高持續性注意力、自我效能。此外,持續性注意力與自我效能皆會正向影響學習成效,而學習成效又會對持續使用意圖產生正向影響。
      根據研究結果,本研究建議未來不論是研究或是實務領域,皆可參考本結果,針對不同學習風格者給予較合適的回饋機制輔助,以利學習者能夠獲得最佳之整體學習效益。

    In recent years, websites have been widely used in education. However, it is challenging for teachers to enhance students’ attention because they cannot assist immediately. On the other hand, recent studies regarding the implementation of EEG devices argue that it provides prompt feedbacks. Furthermore, previous studies showed that students with different learning styles benefit diversely from the same type of EEG biofeedback. Additionally, academics find that self-efficacy is the determinant of online learning. Thus, this study will investigate how different learning styles learners’ sustained attention, self-efficacy, learning effectiveness and continuance intention be impacted via visual and auditory feedback.
    The study used a survey research approach with system implementation to validate hypotheses. There are two stages of experiment in this study. Data collected from 70 respodents was analyzed using SPSS and SmartPLS. The results show that visual feedback enables visual learners to enhance self-efficacy; auditory feedback enables sequential learners to enhance sustained attention and self-efficacy. In addition, sustained attention and self-efficacy have positive effects on learning effectiveness, and learning effectiveness has a positive effect on continuance intention.
    Based on the results, we conclude that it’s essential to provide appropriate feedbacks for learners to achieve the greatest learning performance.

    摘要 I Abstract II 誌謝 V 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍與限制 3 1.4 研究流程 5 第二章 文獻探討 6 2.1 數位學習 (E-learning) 6 2.1.1 數位學習的定義 6 2.1.2 數位學習的優劣 7 2.2 腦電圖 (Electroencephalography, EEG) 8 2.2.1 腦電圖的定義 8 2.2.2 腦波測量儀器 10 2.3 腦波生理回饋機制 (EEG biofeeback) 12 2.4 學習風格 (Learning styles) 14 2.4.1 學習風格的定義 14 2.4.2 學習風格的判定方式 17 2.4.3 學習風格的應用 19 2.5 注意力 (Attention) 21 2.5.1 注意力的定義 21 2.5.2 注意力的量測方式 23 2.6 自我效能 (Self-efficacy) 24 2.7 學習成效 (Learning effectiveness) 26 2.8 持續使用意圖(Continuance intention) 29 2.9 小結 30 第三章 研究方法 32 3.1 研究架構 32 3.2 研究假說 34 3.2.1 學習風格導向與持續性注意力 34 3.2.2 學習風格導向與自我效能 37 3.2.3 持續性注意力與學習成效 41 3.2.4 自我效能與學習成效 42 3.2.5 學習成效與持續使用意圖 43 3.3 腦波儀實驗設計 46 3.3.1 變項說明 46 3.3.2 實驗對象 50 3.3.3 實驗儀器設備 51 3.3.4 實驗流程 53 3.4 系統設計 55 3.4.1 系統架構 55 3.4.2 系統功能與使用流程 57 3.5 衡量變項 70 3.6 問卷設計 71 3.6.1 學習風格 71 3.6.2 持續性注意力 74 3.6.3 自我效能 75 3.6.4 學習成效 76 3.6.5 持續使用意圖 80 3.7 前測與資料分析 81 3.7.1 前測 81 3.7.2 資料蒐集 95 3.8 資料分析方法 95 第四章 資料分析與結果 99 4.1 敘述性統計分析 99 4.1.1 問卷回收狀況 99 4.1.2 基本資料敘述性統計 100 4.1.3 研究變項敘述性統計 103 4.1.4 研究變項常態性檢定 114 4.2 信度分析 114 4.3 結構方程模式衡量模型 126 4.3.1 收斂效度 126 4.3.2 區別效度 130 4.3.3 共線性診斷 133 4.4 結構方程模式之結構模型 134 4.4.1 假說驗證 134 4.4.2 路徑分析 135 4.5 研究分析與討論 140 4.5.1 持續性注意力 140 4.5.2 自我效能 142 4.5.3 學習成效 143 4.5.4 持續使用意圖 145 第五章 結論 146 5.1 學術貢獻 146 5.2 實務貢獻 147 5.3 研究限制與未來研究方向 150 5.3.1 研究限制 150 5.3.2 未來研究方向 152 參考文獻 154 附錄A 正式問卷 163 附錄B 研究變項常態性檢定結果 188 附錄C 實驗對象對本研究之建議 197

    Al-Samarraie, H., Teo, T., & Abbas, M. (2013). Can structured representation enhance students' thinking skills for better understanding of e-learning content? Computers & Education, 69, 463-473.
    Arkorful, V., & Abaidoo, N. (2015). The role of e-learning, the advantages and disadvantages of its adoption in higher education. International Journal of Education and Research, 12(1), 29-42.
    Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215.
    Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122-147.
    Bandura, A. (1997). Self-Efficacy: The Exercise of Control. New York: W. H. Freeman and Company.
    Beatson, N. J., Berg, D. A. G., & Smith, J. K. (2018). The impact of mastery feedback on undergraduate students’ self-efficacy beliefs. Studies in Educational Evaluation, 59, 58-66.
    Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370.
    Bolkan, S., Goodboy, A. K., & Myers, S. A. (2016). Conditional processes of effective instructor communication and increases in students’ cognitive learning. Communication Education, 66(2), 129-147.
    Chen, C. M., & Huang, S. H. (2014). Web-based reading annotation system with an attention-based self-regulated learning mechanism for promoting reading performance. British Journal of Educational Technology, 45(5), 959-980.
    Chen, C. M., & Lin, Y. J. (2014). Effects of different text display types on reading comprehension, sustained attention and cognitive load in mobile reading contexts. Interactive Learning Environments, 24(3), 553-571.
    Chen, C. M., & Wang, J. Y. (2017). Effects of online synchronous instruction with an attention monitoring and alarm mechanism on sustained attention and learning performance. Interactive Learning Environments, 26(4), 427-443.
    Chen, C. M., Wang, J. Y., & Yu, C. M. (2017). Assessing the attention levels of students by using a novel attention aware system based on brainwave signals. British Journal of Educational Technology, 48(2), 348-369.
    Chen, C. M., & Wu, C. H. (2015). Effects of different video lecture types on sustained attention, emotion, cognitive load, and learning performance. Computers & Education, 80, 108-121.
    Cheng, C. H., & Su, C. H. (2012). A Game-based learning system for improving student's learning effectiveness in system analysis course. Procedia - Social and Behavioral Sciences, 31, 669-675.
    Chrysafiadi, K., & Virvou, M. (2013). PeRSIVA: An empirical evaluation method of a student model of an intelligent e-learning environment for computer programming. Computers & Education, 68, 322-333.
    Chung, H. O., Oczkowski, S. J., Hanvey, L., Mbuagbaw, L., & You, J. J. (2016). Educational interventions to train healthcare professionals in end-of-life communication: A systematic review and meta-analysis. BMC Medical Education, 16(1), 131.
    Chynal, P., Kozierkiewicz-Hetmańska, A., & Pietranik, M. (2017). Personalisation of learning process in intelligent tutoring systems using behavioural measures. Multimedia and Network Information Systems, 407-417.
    Crompton, H., & Burke, D. (2018). The use of mobile learning in higher education: A systematic review. Computers & Education, 123, 53-64.
    Das, J. P., & Melnyk, L. (1989). Attention checklist: A rating scale for mildly mentally handicapped adolescents. 64(3), 1267-1274.
    Direito, I., Pereira, A., & Duarte, A. (2012). Engineering undergraduates’ perceptions of soft skills: Relations with self-efficacy and learning styles. Procedia - Social and Behavioral Sciences, 55, 843-851.
    Edla, D. R., Mangalorekar, K., Dhavalikar, G., & Dodia, S. (2018). Classification of EEG data for human mental state analysis using random forest classifier. Procedia Computer Science, 132, 1523-1532.
    Egner, T., & Gruzelier, J. H. (2004). EEG Biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology, 115(1), 131-139.
    Esche, C. A., Warren, J. I., Woods, A. B., Jesada, E. C., & Iliuta, R. (2015). Traditional classroom education versus computer-based learning: How nurses learn about pressure ulcers. Journal for Nurses in Professional Development, 31(1), 21-27.
    Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering education. Engineering Education, 78(7), 674-681.
    Felder, R. M., & Soloman, B. A. (2001). Index of learning styles questionnaire. Retrieved May 15, 2019, from North Carolina State University website: https://www.webtools.ncsu.edu/learningstyles/.
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2010). SEM: An introduction. In Multivariate Data Analysis: A Global Perspective (pp. 629-686): Pearson Education.
    Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks: Sage publications.
    Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.
    Harandi, S. R. (2015). Effects of e-learning on students’ motivation. Procedia - Social and Behavioral Sciences, 181, 423-430.
    Hattie, J., & Timperley, H. (2016). The power of feedback. Review of Educational Research, 77(1), 81-112.
    Heidrich, L., Barbosa, J. L. V., Cambruzzi, W., Rigo, S. J., Martins, M. G., & dos Santos, R. B. S. (2018). Diagnosis of learner dropout based on learning styles for online distance learning. Telematics and Informatics, 35(6), 1593-1606.
    Hernandez-Torrano, D., Ali, S., & Chan, C. K. (2017). First year medical students' learning style preferences and their correlation with performance in different subjects within the medical course. BMC Medical Education, 17(1), 131.
    Hinton, P. R., McMurray, I., & Brownlow, C. (2014). SPSS Explained. New York: Routledge.
    Honey, P., & Mumford, A. (1992). The Manual of Learning Styles. Melbourne: Psych Press.
    Hsu, T. C. (2017). Learning english with augmented reality: Do learning styles matter? Computers & Education, 106, 137-149.
    Hu, P. J. H., & Hui, W. (2012). Examining the role of learning engagement in technology-mediated learning and its effects on learning effectiveness and satisfaction. Decision Support Systems, 53(4), 782-792.
    Huang, C. F., Nien, W. P., & Yeh, Y. S. (2015). Learning effectiveness of applying automated music composition software in the high grades of elementary school. Computers & Education, 83, 74-89.
    Huang, Y. M., Liu, M. C., Lai, C. H., & Liu, C. J. (2017). Using humorous images to lighten the learning experience through questioning in class. British Journal of Educational Technology, 48(3), 878-896.
    Hung, Y. H., Chang, R. I., & Lin, C. F. (2016). Hybrid learning style identification and developing adaptive problem-solving learning activities. Computers in Human Behavior, 55, 552-561.
    Hwang, G. J., Chiu, L. Y., & Chen, C. H. (2015). A contextual game-based learning approach to improving students' inquiry-based learning performance in social studies courses. Computers & Education, 81, 13-25.
    Hwang, G. J., Sung, H. Y., & Chang, H. (2016). Effects of concept-mapping-based interactive e-books on active and reflective-style students’ learning performances in junior high school law courses. Interactive Learning Environments, 25(7), 877-888.
    Hwang, G. J., Sung, H. Y., Hung, C. M., & Huang, I. (2013). A learning style perspective to investigate the necessity of developing adaptive learning systems. Journal of Educational Technology & Society, 16(2), 188-197.
    Hwang, G. J., Sung, H. Y., Hung, C. M., Huang, I., & Tsai, C. C. (2012). Development of a personalized educational computer game based on students’ learning styles. Educational Technology Research and Development, 60(4), 623-638.
    John, D., & Boucouvalas, A. (2002). User performance with audio: The effect of subjects' cognitive styles. Educational Psychology, 22(2), 133-147.
    Kannan, V. R., & Tan, K. C. (2005). Just in time, total quality management, and supply chain management: Understanding their linkages and impact on business performance. Omega, 33(2), 153-162.
    KB, S. K., Krishna, G., Bhalaji, N., & Chithra, S. (2019). BCI cinematics – A pre-release analyser for movies using H2O deep learning platform. Computers & Electrical Engineering, 74, 547-556.
    Ketelhut, D. J. (2006). The impact of student self-efficacy on scientific inquiry skills: An exploratory investigation in river city, a multi-user virtual environment. Journal of Science Education and Technology, 16(1), 99-111.
    Kim, H. J., & Jang, H. Y. (2015). Factors influencing students' beliefs about the future in the context of tablet-based interactive classrooms. Computers & Education, 89, 1-15.
    Kim, J. Y., & Lim, K. Y. (2019). Promoting learning in online, ill-structured problem solving: The effects of scaffolding type and metacognition level. Computers & Education, 138, 116-129.
    Kirkpatrick, D. L. (1998). Another Look at Evaluating Training Programs : Fifty Articles from Training & Development and Technical Training : Magazines Cover the Essentials of Evaluation and Return-on-investment. Alexandria, VA: American Society for Training & Development.
    Kirkpatrick, D. L., & Kirkpatrick, J. D. (2006). Evaluating Training Programs : The Four Levels. San Francisco, CA: Berrett-Koehler.
    Klašnja-Milićević, A., Vesin, B., Ivanović, M., & Budimac, Z. (2011). E-learning personalization based on hybrid recommendation strategy and learning style identification. Computers & Education, 56(3), 885-899.
    Kline, R. B. (2015). Principles and Practice of Structural Equation Modeling. New York: The Guilford Press.
    Koć-Januchta, M., Höffler, T., Thoma, G. B., Prechtl, H., & Leutner, D. (2017). Visualizers versus verbalizers: Effects of cognitive style on learning with texts and pictures – an eye-tracking study. Computers in Human Behavior, 68, 170-179.
    Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Englewood Cliffs, NJ: Prentice Hall.
    Kuo, Y. C., Chu, H. C., & Tsai, M. C. (2017). Effects of an integrated physiological signal-based attention-promoting and english listening system on students' learning performance and behavioral patterns. Computers in Human Behavior, 75, 218-227.
    Labib, W., Pasina, I., Abdelhadi, A., Bayram, G., & Nurunnabi, M. (2019). Learning style preferences of architecture and interior design students in Saudi Arabia: A survey. MethodsX, 6, 961-967.
    Liao, C. W., Chen, C. H., & Shih, S. J. (2019). The interactivity of video and collaboration for learning achievement, intrinsic motivation, cognitive load, and behavior patterns in a digital game-based learning environment. Computers & Education, 133, 43-55.
    Lin, C. S., Lai, Y. C., Lin, J. C., Wu, P. Y., & Chang, H. C. (2014). A novel method for concentration evaluation of reading behaviors with electrical activity recorded on the scalp. Comput Methods Programs Biomed, 114(2), 164-171.
    Lin, F. R., & Kao, C. M. (2018). Mental effort detection using EEG data in e-learning contexts. Computers & Education, 122, 63-79.
    Lin, Y. T., & Chen, C. M. (2018). Improving effectiveness of learners’ review of video lectures by using an attention-based video lecture review mechanism based on brainwave signals. Interactive Learning Environments, 27(1), 86-102.
    Linden, M., Habib, T., & Radojevic, V. (1996). A controlled study of the effects of EEG biofeedback on cognition and behavior of children with attention deficit disorder and learning disabilities. Biofeedback and Self-Regulation, 21(1), 35-49.
    Luo, Z., & Wang, Y. (2019). Eye-tracking technology in identifying visualizers and verbalizers- data on eye-movement differences and detection accuracy. Data in Brief, 26, 104447.
    Lyon, G. R., & Krasnegor, N. A. (1996). Attention, Memory, and Executive Function. Baltimore, MD, US: Paul H Brookes Publishing Co.
    Maddison, T., Doi, C., Lucky, S., & Kumaran, M. (2017). Literature review of online learning in academic libraries. In Distributed Learning (pp. 13-46).
    Mahmoudi, M. T., Mojtahedi, S., & Shams, S. (2017). AR-based value-added visualization of infographic for enhancing learning performance. Computer Applications in Engineering Education, 25(6), 1038-1052.
    Marjanovic, U., Delić, M., & Lalic, B. (2016). Developing a model to assess the success of e-learning systems: Evidence from a manufacturing company in transitional economy. Information Systems and e-Business Management, 14(2), 253-272.
    Mayer, R. E. (2003). Elements of a science of e-learning. Journal of Educational Computing Research, 29(3), 297-313.
    Mazor-Karsenty, T., Parush, S., & Shalev, L. (2019). Sustained attention in sensory modulation disorder and attention deficit/hyperactivity disorder. Research in Developmental Disabilities, 88, 22-29.
    McKimm, J., Jollie, C., & Cantillon, P. (2003). ABC of learning and teaching: Web based learning. British Medical Journal, 326(7394), 870-873.
    Mohammadi, H. (2015). Social and individual antecedents of m-learning adoption in Iran. Computers in Human Behavior, 49, 191-207.
    Mohammadyari, S., & Singh, H. (2015). Understanding the effect of e-learning on individual performance: The role of digital literacy. Computers & Education, 82, 11-25.
    Monecke, A., & Leisch, F. (2012). semPLS: Structural equation modeling using partial least squares. Journal of Statistical Software, 48(3), 1-32.
    Muldner, K., & Burleson, W. (2015). Utilizing sensor data to model students’ creativity in a digital environment. Computers in Human Behavior, 42, 127-137.
    Navalyal, G. U., & Gavas, R. D. (2014). A dynamic attention assessment and enhancement tool using computer graphics. Human-centric Computing and Information Sciences, 4(1), 11.
    Neuman, W. L. (2006). Social Research Methods : Quantitative and Qualitative Approaches. Boston: Allyn and Bacon.
    NeuroSky. (2015). Mindset communications protocol. Retrieved May 15, 2019, from http://developer.neurosky.com/docs/lib/exe/fetch.php?media=mindset_communications_protocol.pdf.
    Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory. New York: McGraw-Hill.
    Pask, G., & Scott, B. C. E. (1972). Learning strategies and individual competence. International Journal of Man-Machine Studies, 4(3), 217-253.
    Petri, G., & Gresse von Wangenheim, C. (2017). How games for computing education are evaluated? A systematic literature review. Computers & Education, 107, 68-90.
    Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1991). A Manual for the Use of the Motivated Strategies for Learning Questionnaire (MSLQ). Ann Arbor, Mich.: National Center for Research to Improve Postsecondary Teaching and Learning.
    Pintrich, P. R., Smith, D. A. F., Garcia, T., & Mckeachie, W. J. (1993). Reliability and predictive validity of the motivated strategies for learning questionnaire (MSLQ). Educational and Psychological Measurement, 53(3), 801-813.
    Porter, C. E., & Donthu, N. (2008). Cultivating trust and harvesting value in virtual communities. Management Science, 54(1), 113-128.
    Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological Review, 78(5), 391-408.
    Raj, R., Deb, S., & Bhattacharya, P. (2018). Brain computer interfaced single key omni directional pointing and command system: A screen pointing interface for differently-abled person. Procedia Computer Science, 133, 161-168.
    Ren, Y., Dai, Z. X., Zhao, X. H., Fei, M. M., & Gan, W. T. (2017). Exploring an on-line course applicability assessment to assist learners in course selection and learning effectiveness improving in e-learning. Learning and Individual Differences, 60, 56-62.
    Riding, R. J., & Al-Sanabani, S. (1998). The effect of cognitive style, age, gender and structure on the recall of prose passages. International Journal of Educational Research, 29(3), 173-185.
    Rodríguez-Ardura, I., & Meseguer-Artola, A. (2014). What leads people to keep on e-learning? An empirical analysis of users' experiences and their effects on continuance intention. Interactive Learning Environments, 24(6), 1030-1053.
    Rodríguez-Ardura, I., & Meseguer-Artola, A. (2016). E-learning continuance: The impact of interactivity and the mediating role of imagery, presence and flow. Information & Management, 53(4), 504-516.
    Rodríguez-Ardura, I., & Meseguer-Artola, A. (2017). Flow in e-learning: What drives it and why it matters. British Journal of Educational Technology, 48(4), 899-915.
    Romero-Naranjo, F. J. (2014). Body percussion and memory for elderly people through the BAPNE method. Procedia - Social and Behavioral Sciences, 132, 533-537.
    Rosipal, R., & Krämer, N. (2006). Overview and recent advances in partial least squares. Paper presented at the Subspace, Latent Structure and Feature Selection, Berlin, Heidelberg.
    Sangrà, A., Vlachopoulos, D., & Cabrera, N. (2012). Building an inclusive definition for e-learning: an approach to the conceptual framework. International Review of Research in Open and Distributed Learning, 13(2), 145-159.
    Sauseng, P., Hoppe, J., Klimesch, W., Gerloff, C., & Hummel, F. C. (2007). Dissociation of sustained attention from central executive functions: Local activity and interregional connectivity in the theta range. Eur J Neurosci, 25(2), 587-593.
    Schunk, D. H., & Swartz, C. W. (1993). Goals and progress feedback: Effects on self-efficacy and writing achievement. Contemporary Educational Psychology, 18(3), 337-354.
    Sezer, B. (2016). Faculty of medicine students' attitudes towards electronic learning and their opinion for an example of distance learning application. Computers in Human Behavior, 55, 932-939.
    Sheba, J. K., Salman, A. A., Kumar, S., Phuc, L. T., Elara, M. R., & Martínez-García, E. (2018). Behavioral responses of nursing home residents to a robotic pet dog with a customizable interactive kit. Procedia Computer Science, 133, 409-416.
    Shen, D., Cho, M. H., Tsai, C. L., & Marra, R. (2013). Unpacking online learning experiences: Online learning self-efficacy and learning satisfaction. The Internet and Higher Education, 19, 10-17.
    Simonson, M., Zvacek, S. M., & Smaldino, S. (2019). Teaching and Learning at a Distance: Foundations of Distance Education 7th Edition: Information Age Publishing.
    Smallwood, J., & Schooler, J. W. (2006). The restless mind. Psychol Bull, 132(6), 946-958.
    Soflano, M., Connolly, T. M., & Hainey, T. (2015). An application of adaptive games-based learning based on learning style to teach SQL. Computers & Education, 86, 192-211.
    Sun, J. C. Y. (2014). Influence of polling technologies on student engagement: An analysis of student motivation, academic performance, and brainwave data. Computers & Education, 72, 80-89.
    Sun, J. C. Y., & Yeh, K. P. C. (2017). The effects of attention monitoring with EEG biofeedback on university students' attention and self-efficacy: The case of anti-phishing instructional materials. Computers & Education, 106, 73-82.
    Suskie, L. (2018). Assessing Student Learning: A Common Sense Guide: Jossey-Bass.
    Teplan, M. (2002). Fundamentals of EEG measurement. Measurement Science Review, 2, 1-11.
    Tortorella, R. A. W., & Graf, S. (2015). Considering learning styles and context-awareness for mobile adaptive learning. Education and Information Technologies, 22(1), 297-315.
    Truong, H. M. (2016). Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities. Computers in Human Behavior, 55, 1185-1193.
    Tsai, C. Y. (2019). Improving students' understanding of basic programming concepts through visual programming language: The role of self-efficacy. Computers in Human Behavior, 95, 224-232.
    Verkijika, S. F., & De Wet, L. (2015). Using a brain-computer interface (BCI) in reducing math anxiety: Evidence from South Africa. Computers & Education, 81, 113-122.
    Vinzi, V. E., Chin, W. W., Henseler, J., & Wang, H. (2010). Handbook of Partial Least Squares: Concepts, Methods and Applications: Springer Publishing Company, Incorporated.
    Wang, C. C., & Hsu, M. C. (2014). An exploratory study using inexpensive electroencephalography (EEG) to understand flow experience in computer-based instruction. Information & Management, 51(7), 912-923.
    Wang, M. (2018). Effects of individual and social learning support on employees’ acceptance of performance-oriented e-learning. In E-Learning in the Workplace: A Performance-Oriented Approach Beyond Technology (pp. 141-159). Cham: Springer International Publishing.
    Wei, F. Y. F., Wang, Y. K., & Fass, W. (2014). An experimental study of online chatting and notetaking techniques on college students’ cognitive learning from a lecture. Computers in Human Behavior, 34, 148-156.
    Wei, F. Y. F., Wang, Y. K., & Klausner, M. (2012). Rethinking college students' self-regulation and sustained attention: Does text messaging during class influence cognitive learning? Communication Education, 61(3), 185-204.
    Xu, D., Huang, W. W., Wang, H., & Heales, J. (2014). Enhancing e-learning effectiveness using an intelligent agent-supported personalized virtual learning environment: An empirical investigation. Information & Management, 51(4), 430-440.
    Xu, J., & Zhong, B. (2018). Review on portable EEG technology in educational research. Computers in Human Behavior, 81, 340-349.
    Yang, T. C., Chen, M. C., & Chen, S. Y. (2018). The influences of self-regulated learning support and prior knowledge on improving learning performance. Computers & Education, 126, 37-52.
    Yang, X., Lin, L., Cheng, P. Y., Yang, X., & Ren, Y. (2019). Which EEG feedback works better for creativity performance in immersive virtual reality: The reminder or encouraging feedback? Computers in Human Behavior, 99, 345-351.
    Yoo, Y., Lee, H., Jo, I. H., & Park, Y. (2015). Educational dashboards for smart learning: Review of case studies. In Emerging issues in smart learning (pp. 145-155). Berlin, Heidelberg: Springer.

    無法下載圖示 校內:2025-07-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE