簡易檢索 / 詳目顯示

研究生: 張景翔
Chang, Ching-Hsiang
論文名稱: 三端式操作氧化鎢/氧化鋯電阻轉換元件之電性行為
Electrical Characteristics of Three-terminal Operated WOx/ZrOx Bilayer Device
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 115
中文關鍵詞: 氧化鎢三端式電流量測類比式電流變化突觸功能
外文關鍵詞: Tungsten oxide, three-terminal measurement, analog, synaptic function
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要研究的元件為可變電阻式記憶體(Resistive random-access memory, RRAM),一般進行此種元件的性質探討都是採用兩端式上電極與下電極進行電性量測,而本實驗中吾人使用三端式汲極(Drain)、源極(Source)與閘極(Gate)三個端點透過不同的量測設定以及不同的汲極與源極間距的所測得的電性結果進行探討。
    吾人主要探討Ta/WOx/ZrOx/Pt結構之試片,Ta將會被圖案化成約為200µm x 200µm的正方形作為汲極與源極,其餘三個疊層並無進行圖形化,Pt金屬作為閘極端。經由三端式的IDVG的電流量測結果發現此試片結構的汲極電流會隨著閘極偏壓由-4V掃伏到+4V有增加的趨勢且最高與最低電流比約為106倍,由+4V掃伏回-4V時汲極電流並非沿著原本曲線降低,+4V~0V汲極電流處在高電流狀態,直到閘極偏壓小於0V汲極電流才開始降低,使得IDVG的電流量測結果會觀察到一個逆時針遲滯現象,且同時閘極電流也有相似的趨勢。
    此Ta/WOx/ZrOx/Pt的IDVG來回掃伏曲線觀察到一個逆時針遲滯現象,並針對此曲線的變化提出是由於在閘極端施加正偏壓,電場效應驅使帶正電氧空缺移動到Ta/WOx界面以及汲極和源極間通道堆積導致水平方向汲極電流值的上升;當閘極偏壓由+4V掃伏回0V時,由於此時閘極依然是處於正偏壓狀態,電流仍然會因為帶正電氧空缺堆積在Ta/WOx界面以及汲極和源極間通道使汲極仍然處於高電流狀態;當閘極偏壓小於0V時,帶正電氧空缺才會因電場效應開始離開Ta/WOx界面以及汲極和源極間通道,使得汲極電流值下降。
    元件應用方面,吾人利用此遲滯現象,將Ta/WOx/ZrOx/Pt元件給予短暫電脈衝模擬突觸元件權重(Weight)變化的一些基本操作,包括:單一電脈衝(Single pulse)、增益(Potentiation)、抑制(Depression)以及雙重脈衝促進(paired-pulse facilitation, PPF)。單一電脈衝的操作中吾人又細分為兩類:(1)不同強度的電脈衝但給予脈衝的時間長度固定,以及(2)相同強度的電脈衝但給予脈衝的時間長度不同,此兩類的實驗結果顯示汲極電流會因為在閘極端所施加的正電脈衝強度越高或是時間越長,元件在脈衝後產生的汲極電流值也會越大,與生物體突觸中給予脈衝強度越高或影響時間越長,其權重也會越大相符合。並由於在閘極端施加正偏壓會使得元件汲極電流值上升,閘極端施加負偏壓會使汲極電流值下降的關係,設計連續給予閘極正電脈衝後,再連續給予閘極負電脈衝,模擬生物體突觸權重的增益與抑制的現象,且此試片結構的增益與抑制線性程度為αP/αD=0.64/-0.27。最後也操作了雙重脈衝促進,給予兩個相同強度、作用時間的電脈衝,會由於此兩個電脈衝相隔時間越短最後所產生的電流變化會越大。

    The resistive switching performances generally are characterized using two-terminal devices. In this study, a three-terminal device architecture, similar to a transistor (with source, drain, and gate electrodes, is employed to discuss the electrical characteristics through different measurement settings.
    The three-terminal IDVG current measurement shows that the drain current will increase with the gate bias which sweeps from -4V to +4V, with on/off ratio of the drain current about 106. When the gate bias sweeps from +4V back to -4V, the drain current does not decrease along the original curve. Therefore, a counter-clockwise hysteresis is observed in the IDVG current measurement. A mechanism is proposed to explain counter-clockwise hysteresis curve. When apply a positive voltage at the gate terminal, positively charged oxygen vacancies are driven under electric filed to the WOx layer and diffuse to the inter-electrode region, leading to a highly conductive channel and causing the ID current value to increase.
    Finally, voltage pulses are applied on the gate terminal of Ta/WOx/ZrOx/Pt device to perform basic synaptic functions, including single pulse stimulation, multi-pulse potentiation, depression and paired-pulse facilitation (PPF). The linearities of potentiation and depression are α_P=0.64 and α_D=-0.27, respectively. And, ION/IOFF ratio is about 28.8.

    摘要 i Extended Abstract iii 誌謝 vi 表目錄 xii 圖目錄 xiii 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章、理論基礎與文獻回顧 4 2-1電阻式隨機存取記憶體(RRAM) 4 2-1.1 電流-電壓特性曲線(I-V curve) 4 2-1.2 電阻轉換機制 6 2-2 人工突觸元件(Artificial Synapse Device) 10 2-3相關文獻 16 2-3.1 Nonvolatile three-terminal operation based on oxygen vacancy drift in a Pt/Ta2O5−x/Pt, Pt structure15 16 2-3.2 Understanding of proton induced synaptic behaviors in three-terminal synapse device for neuromorphic systems10 18 2-3.3 W/WO3−x based three-terminal synapse device with linear conductance change and high on/off ratio for neuromorphic application16 20 第三章 實驗方法與步驟 22 3-1 實驗材料 22 3-1.1 基板材料 22 3-1.2 基板清洗藥品 22 3-1.3 ZTO溶液配置藥品 23 3-1.4 微影蝕刻藥品 23 3-1.5 電子束蒸鍍源 23 3-1.6 濺鍍靶材 23 3-1.7 氧化物介電層 24 3-1.8 實驗使用氣氛 24 3-2 實驗設備 26 3-2.1 濺鍍系統 26 3-2.2 乾式熱氧化系統 26 3-3 實驗流程 27 3-2.1 基板清洗與熱氧化SiO2 27 3-2.2 配置ZTO前驅物溶液 27 3-2.3 MIM元件製備 28 3-2.4 TFT元件製備 29 3-4 分析儀器 30 3-4.1 橢圓偏光儀(Ellipsometer) 30 3-4.2 表面粗度儀(α-step) 30 3-4.3前瞻聚焦離子束系統(Advanced Focused Ion Beam System, FIB) 31 3-4.4 穿透式電子顯微鏡(transmission microprobe, TEM) 31 3-4.5 四點探針儀(four-point probe) 32 3-4.6精密半導體參數分析儀(Precision Semiconductor Parameter Analyzer) 32 第四章 結果與討論 33 4-1 元件命名與元件結構 33 4-2 材料分析 38 4-2.1 TEM分析 38 4-2.2 XPS分析 42 4-3 兩端式與三端式電流量測對應關係 47 4-3.1 三端式電流量測 47 4-3.2 兩端式電流量測對應三端式電流 47 4-4 兩端式對應三端式電流量測之計算 51 4-4.1 Ta/ZrOx/Pt結構電流結果 51 4-4.2 Al/ZTO/SiO2/p+ Si結構電流結果 56 4-4.3 Ta/WOx/ZrOx/Pt結構電流結果 61 4-5 三端式Ta/WOx/ZrOx/Pt IDVG電流變化探討 67 4-5.1 縱向電流(Igs、Igd) 67 4-5.2 橫向電流(ID) 69 4-5.3 Ta/WOx/Pt 電性量測 76 4-5.4 Pt/WOx/ZrOx/Pt 電性量測 78 4-6 Ta/WOx/ZrOx/Pt 各種不同參數變化電性量測探討 80 4-6.1 IDVG量測(當 VD=0V) 80 4-6.2不同VG條件下 IDVD量測 82 4-6.3 不同通道長度影響 85 4-7 Ta/WOx/ZrOx/Pt 電脈衝行為 87 4-7.1 單一脈衝行為 87 4-7.2 增益(Potentiation)與抑制(Depression) 94 4-7.3 雙重脈衝促進(paired-pulse facilitation, PPF) 101 4-8 Al/ZTO/SiO2/p+ Si 電脈衝行為 103 4-9 與其他文獻比較 106 結論 108 參考文獻 110

    [1] Ielmini, D.; Wong, H. S. P. In-memory computing with resistive switching devices. Nature Electronics. 2018, 1, 333-343. DOI: 10.1038/s41928-018-0092-2
    [2] Ventra, M. D.; Pershin, Y. V.; Chua, L. O. Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors. Proceedings of the IEEE. 2009, 97, 1717-1724. DOI: 10.1109/JPROC.2009.2021077
    [3] Wang, Y.F.; Lin, Y. C.; Wang, I.T.; Lin, T. P.; Hou, T. H. Characterization and Modeling of Nonfilamentary Ta/TaOx/TiO2/Ti Analog Synaptic Device. Scientific Reports. 2015, 5, 10150. DOI: 10.1038/srep10150
    [4] Seo, K.; Kim, I.; Jung, S.; Jo, M.; Park, S.; Park, J.; Shin, J.; Biju, K. P.; Kong, J.; Lee, K.; Lee, B.; Hwang, H. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology. 2011, 22, 254023. DOI: 10.1088/0957-4484/22/25/254023
    [5] Chen, Z.; Yu, Y.; Jin, L.; Li, Y.; Li, Q.; Li, T.; Zhang, Y.; Dai, H.; Yao, J. Artificial synapses with photoelectric plasticity and memory behaviors based on charge trapping memristive system. Materials and Design. 2020, 188, 108415. DOI: 10.1016/j.matdes.2019.108415
    [6] Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater. 2009, 21, 2632–2663. DOI: 10.1002/adma.200900375
    [7] Valov, I.; Waser, R.; Jameson, J. R.; Kozicki, M. N. Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology. 2011, 22, 254003. DOI: 10.1088/0957-4484/22/25/254003
    [8] Prakash, A.; Maikap, S.; Rahaman, S. Z.; Majumdar, S.; Manna, S.; Ray, S. K.; Resistive switching memory characteristics of Ge/GeOx nanowires and evidence of oxygen ion migration. Nanoscale Research Letters. 2013, 8, 220. DOI: 10.1186/1556-276X-8-220
    [9] Chang, S. H.; Chae, S. C.; Lee, S. B.; Liu, C.; Noh, T. W.; Lee, J. S.; Kahng, B.; Jang, J. H.; Kim, M. Y.; Kim, D. W.; Jung, C. U. Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors. APPLIED PHYSICS LETTERS. 2008, 92, 183507. DOI: 10.1063/1.2924304
    [10] Lee, J.; Lim, S.; Kwak, M.; Song, J.; Hwang, H. Understanding of proton induced synaptic behaviors in three-terminal synapse device for neuromorphic systems. Nanotechnology. 2019, 30, 255202. DOI: 10.1088/1361-6528/ab0b97
    [11] Jang, J. W.; Park, S.; Burr, G. W.; Hwang, H.; Jeong, Y. H. Optimization of Conductance Change in Pr1−xCaxMnO3-Based Synaptic Devices for Neuromorphic Systems. IEEE ELECTRON DEVICE LETTERS. 2015, 36, 457-459. DOI: 10.1109/LED.2015.2418342
    [12] Zucker, R. S.; Regehr, W. G. SHORT-TERM SYNAPTIC PLASTICITY. Annu. Rev. Physiol. 2002, 64, 355–405. DOI: 10.1146/annurev.physiol.64.092501.114547
    [13] Caporale, N.; Dan, Y. Spike Timing–Dependent Plasticity: A Hebbian Learning Rule. Annu. Rev. Neurosci. 2008, 31, 25–46. DOI: 10.1146/annurev.neuro.31.060407.125639
    [14] Bi, G. Q.; Poo, M. M. SYNAPTIC MODIFICATION BY CORRELATED ACTIVITY: Hebb’s Postulate Revisited. Annu. Rev. Neurosci. 2001, 24, 139–166. DOI: 10.1146/annurev.neuro.24.1.139
    [15] Wang, Q.; Itoh, Y.; Hasegawa, T.; Tsuruoka, T.; Yamaguchi, S.; Watanabe, S.; Hiramoto, T.; Aono, M. Nonvolatile three-terminal operation based on oxygen vacancy drift in a Pt/Ta2O5−x/Pt, Pt structure. APPLIED PHYSICS LETTERS. 2013, 102, 233508. DOI: 10.1063/1.4811122
    [16] Go, J.; Kim, Y.; Kwak, M.; Song, J.; Chekol, S. A.; Kwon, J. D.; Hwang, H. W/WO3−x based three-terminal synapse device with linear conductance change and high on/off ratio for neuromorphic application. Applied Physics Express. 2019, 12, 026503. DOI: 10.7567/1882-0786/aafc74
    [17] Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corp.:Eden Prairie, MN, 1995; pp 230−232.
    [18] Demiryont, H.; Sites, J. R.; Geib, K. Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering. APPLIED OPTICS. 1985, 24, 490-495. DOI: 10.1364/AO.24.000490
    [19] Sohal, R.; Walczyk, C.; Zaumseil, P.; Wolansky, D.; Fox, A.; Tillack, B.; Mussig, H. J.; Schroeder, T. Thermal oxidation of chemical vapour deposited tungsten layers on silicon substrates for embedded non-volatile memory application. Thin Solid Films. 2009, 517, 4534−4539. DOI: 10.1016/j.tsf.2008.12.036
    [20] Senthil, K.; Yong, K. Growth and characterization of stoichiometric tungsten oxide nanorods by thermal evaporation and subsequent annealing. Nanotechnology. 2007, 18, 395604. DOI: 10.1088/0957-4484/18/39/395604
    [21] Xiao, Z.; Kisslinger, K.; Chance, S.; Banks, S. Comparison of Hafnium Dioxide and Zirconium Dioxide Grown by Plasma-Enhanced Atomic Layer Deposition for the Application of Electronic Materials. Crystals. 2020, 10, 136. DOI: 10.3390/cryst10020136
    [22] David R. Lide. CRC Handbook of Chemistry and Physics, The 86th Edition. (2005)
    [23] Gao, B.; Wu, H.; Wu, W.; Wang, X.; Yao, P.; Xi, Y.; Zhang, W.; Deng, N.; Huang, P.; Liu, X.; Kang, J.; Chen, H. Y.; Yu, S.; Qian, H. Modeling disorder effect of the oxygen vacancy distribution in filamentary analog RRAM for neuromorphic computing. IEEE IEDM. 2017, 17, 91-94. DOI: 10.1109/IEDM.2017.8268326
    [24] Wang, Z.; Yin, M.; Zhang, T.; Cai, Y.; Wang, Y.; Yang, Y.; Huang, R. Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing. Nanoscale. 2016, 8, 14015–14022. DOI: 10.1039/c6nr00476h
    [25] Lee, J.; Nikam, R. D.; Lim, S.; Kwak, M.; Hwang, H. Excellent synaptic behavior of lithium-based nano-ionic transistor based on optimal WO2.7 stoichiometry with high ion diffusivity. Nanotechnology. 2020, 31, 235203. DOI: 10.1088/1361-6528/ab793d
    [26] Yang, C. S.; Shang, D. S.; Liu, N.; Shi, G.; Shen, X.; Yu, R. C.; Li, Y. Q.; Sun, Y. A Synaptic Transistor based on Quasi-2D Molybdenum Oxide. Adv. Mater. 2017, 29,1700906. DOI: 10.1002/adma.201700906
    [27] Nikam, R .D.; Kwak, M.; Lee, J.; Rajput, K. G.; Hwang, H. Controlled Ionic Tunneling in Lithium Nanoionic Synaptic Transistor through Atomically Thin Graphene Layer for Neuromorphic Computing. Adv. Electron. Mater. 2019, 1901100. DOI: 10.1002/aelm.201901100
    [28] Wang, R.; Shi, T.; Zhang, X.; Wang, W.; Wei, J.; Lu, J.; Zhao, X.; Wu, Z.; Cao, R.; Long, S.; Liu, Q.; Liu, M. Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing. Materials. 2018, 11, 2102. DOI: 10.3390/ma11112102
    [29] Park, J.; Lee, C.; Kwak, M.; Chekol, S. A.; Lim, S.; Kim, M.; Woo, J.; Hwang, H.; Lee, D. Microstructural engineering in interface-type synapse device for enhancing linear and symmetric conductance changes. Nanotechnology. 2019, 30, 305202. DOI: 10.1088/1361-6528/ab180f
    [30] Li, Y.; Wang, Z.; Midya, R.; Xia, Q.; Yang, J. J. Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. D: Appl. Phys. 2018, 51, 503002. DOI: 10.1088/1361-6463/aade3f
    [31] Xia, Q.; Pickett, M. D.; Yang, J. J.; Li, X.; Wu, W.; Gilberto, M. R.; Williams, R. S. Two- and Three-Terminal Resistive Switches: NanometerScale Memristors and Memistors. Adv. Funct. Mater. 2011, 21, 2660–2665. DOI: 10.1002/adfm.201100180
    [32] Yang, R.; Terabe, K.; Yao, Y.; Tsuruoka, T.; Hasegawa, T.; Gimzewski, J. K.; Aono, M. Synaptic plasticity and memory functions achieved in a WO3−x-based nanoionics device by using the principle of atomic switch operation. Nanotechnology. 2013, 24, 384003. DOI: 10.1088/0957-4484/24/38/384003
    [33] Luo, Q.; Zhang, X.; Hu, Y.; Gong, T.; Xu, X.; Yuan, P.; Ma, H.; Dong, D.; Lv, H.; Long, S.; Liu, Q.; Liu, M. Self-Rectifying and Forming-Free Resistive-Switching Device for Embedded Memory Application. IEEE ELECTRON DEVICE LETTERS. 2018, 39, 664-667. DOI: 10.1109/LED.2018.2821162
    [34] Moon, K.; Lim, S.; Park, J.; Sung, C.; Oh, S.; Woo, J.; Lee, J.; Hwang, H. RRAM-based synapse devices for neuromorphic systems. Faraday D.iscuss. 2019, 213, 421. DOI: 10.1039/c8fd00127h
    [35] Zhang, R.; Huang, H.; Xia, Q.; Ye, C.; Wei, X.; Wang, J.; Zhang, L.; Zhu, L. Q. Role of Oxygen Vacancies at the TiO2/HfO2 Interface in Flexible Oxide-Based Resistive Switching Memory. Adv. Electron. Mater. 2019, 5, 1800833. DOI: 10.1002/aelm.201800833
    [36] Wang, Q.; Itohb, Y.; Tsuruokab, T.; Aonob, M.; Hea, D.; Hasegawac, T. Oxygen vacancy drift controlled three-terminal ReRAM with a reduction in operating gate bias and gate leakage current. Solid State Ionics. 2018, 328, 30-34. DOI: 10.1016/j.ssi.2018.11.004
    [37] Herrmann, E.; Rush, A.; Bailey, T.; Jha, R. Gate Controlled Three-Terminal Metal Oxide Memristor. IEEE ELECTRON DEVICE LETTERS. 2018, 39, 500-503. DOI: 10.1109/LED.2018.2806188
    [38] Wang,L.; Liao, W.; Wong, S. L.; Yu, Z. G.; Li, S.; Lim, Y. F.; Feng, X.; Tan, W. C.; Huang, X.; Chen, L.; Liu, L.; Chen, J.; Gong, X.; Zhu, C.; Liu, X.; Zhang, W. Y.; Chi, D.;Ang, K. W. Artificial Synapses Based on Multiterminal Memtransistors for Neuromorphic Application. Adv. Funct. Mater. 2019, 29, 1901106. DOI: 10.1002/adfm.201901106
    [39] Kim, M.; Yoo, K.; Jeon, S. P.; Park, S. K.; Kim, Y. H. The Effect of Multi-Layer Stacking Sequence of TiOx Active Layers on the Resistive-Switching Characteristics of Memristor Devices. Micromachines. 2020, 11, 154. DOI: 10.3390/mi11020154

    無法下載圖示 校內:2025-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE