| 研究生: |
蔡馨婷 Tasi, Hsin-Ting |
|---|---|
| 論文名稱: |
氮化鎵奈米結構物和MSM光檢測器的製作 Fabrication of GaN-based nanostructures and MSM photodetectors |
| 指導教授: |
蘇炎坤
Su, Yan-Ku 蔡宗祐 Tasi, Tzong-Yow |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 氮化鎵奈米針狀物 、MSM光檢測器 、量子點 |
| 外文關鍵詞: | GaN nanotip, MSM photodetector, qunatum dot |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中利用氯氣以電感耦合電漿蝕刻,氮化鎵的表面利用石英石盤形成的光罩再蝕刻形成奈米柱。 原理是利用石英石盤的SiO2 成份。當氯氣的正離子打到石英石盤上之後形成SiO2+ 離子粉末,沉積在氮化鎵表面上。或 Cl2 打到石英石盤上形成奈米光罩。 可以成長出直徑在10 – 90 nm 高度在200-700 nm 的奈米柱. 這個方法會使氮化鎵奈米柱的表面形成反射性質降低,有助於發光二極體和光檢測器的應用.在第四章, 我們成功的製作出InGaN自組式量子點的光檢測器.發現量子點的結構在 MSM 光檢測器的應用上有發生作用.
量子點的PL強度比沒有量子點的PL強度還強過180倍,可見沒有量子點的結構的電子容易被缺陷補捉住無法產生電子電洞對,而量子點的結構比較沒有缺陷的捕捉,表面積增大,使得產生電子電洞對的機率增加,而且量子點具有侷限效用,可以侷限住電子電洞對。所以具有量子點的光檢測器產生較大的光電流。具有較大的光電流和暗電流的比。在5V的偏壓下,具有量子點結構的光暗電流比為220,而沒有量子點結構的只有3.4。
In the thesis, we form the self-organized GaN nanotips by ICP system which is making use of quartz to form nanomask on GaN sample. The theory is making use of SiO2 of the quartz. The quartz plate is sputtered by Cl+ ions accelerated by cathode bias voltages of -370V to -570V, and then neutral and ionized SiO2 particles are generated. Low-energy SiO2 within the scattered SiO2 particles from the quartz is easily ionized by electron and ion impact in the plasma because of its low speed which has long residence time in the plasma. The diameter of the GaN nanotips is 10-90 nm and the height of the GaN nanotips is 200-700 nm. The excellent antireflection properties of the self-organized GaN nanotips play an important role in improvement of light-emitting and photo-detection devices. Furthermore, we fabricate the self-assembled InGaN quantum dots MSM photodetector. We found the PL intensity of the sample with InGaN quantum dot is about 180 times the normalized PL intensity of the sample without InGaN quantum dots. The sample without InGaN self-assembled quantum dot has the defects which capture electrons in them easily. However, the sample with InGaN quantum dots has larger surface area and without defects to born more electron-hole pairs. The quantum dots have confirmed effect to confirmed electrons. The MSM photodetector with nanostructures has larger photocurrent in the same bias voltage.
Chapter1 References
[1] Charles P. Poole Jr. Frank J. Owens,
Introduction to Nanotechnology,(2003)
[2] Dieter Bimberg Marius Grundmann Nikolai N.
Ledentsov , Quantum Dot Heterosturctures,
(1999)
[3] Edited by R. K. Willardson Eicke R. Weber,
Self-Assembled InGaAs/GaAs Quantum Dots,
volume 60 (1999)
Chapter2 References
[1] Y. Tarui, J. Hidaka and K. Aota, Jpn. J.
Appl. Phys, Vol.23, 827 (1984)
[2] M. Okuyama, Y. Toyoda and Y. Hamakawa, Jpn.
J. Appl. Phys, Vol.23,97 (1984)
[3] O. Itoh, Y. Toyoshima, H. Onuki, N. Washida
and T. Ibuk, J. Chen.Phys, Vol. 85, 4876
(1986).
[4] H. Okabe, “Photochemistry of small
molecules”, Wiely, New York,(1978)
Capter3 Reference
[1] F.A. Ponce and D.P. Bour,” Nitride-based
semiconductors for blue and green light-
emitting devices,” Nature, vol.386, pp. 351-
359, Mar.(1997).
[2] S. Nakamura, “The roles of structural
imperfections in InGaN-based blue light-
emitting diodes and laser diodes,” Science,
vol.281, pp.956-961, Aug. (1998).
[3] I. Akasaki and H. Amano, “Progress and
prospect of group-III nitride
semiconductors”, J. Cryst. Growth, vol.175-
176,pp.29-36,May 1997.
[4] S. Nakamura, T. Mukai, M. Senoh, J. Appl.
Phys. 76 pp.8189 (1994 ).
[5] K. Kusakabe, A. Kikuchi and K. Kishino: Jpn.
J. Appl. Phys. 40 L192 (2001).
[6] S. Kitamura, K. Hiramatsu and N. Sawaki: Jpn.
J. Appl. Phys. 34 L1184 (1995).
[7] B. Daudin, G. Feuillet, H. Mariette, G. Mula,
N. Pelekanos, E. Molva J. L. Rouvi`ere, C.
Adelmann, E. Martinez-Guerreo, J. Barjon, F.
Chabuel, B. Bataillou and J. Simon: Jpn. J.
Appl. Phys. 40 1892 (2001).
[8] C. Youtsey, L. T. Romano and I. Adesida:
Appl. Phys. Lett. 73 797 (1998).
[9] S. Khalfallah, C. Gorecki, J. Podlecku, M.
Nishioka, H. Kawakatsu, and Y. Arakawa, ”Wet- etching fabrication of multiplayer
GaAlAs/GaAs microtips for scanning near-field
optical microscopy,”Appl. Phys. A, vol.71
pp.223-225, June (2000).
[10]Y. Terada, H. Yoshida, T. Urushido, H.
Miyake, and K.Hiramatsu, ”Field emission
from GaN self-organized nanotips” Jpn.
J. Appl. Phys.vol.41, no.11A, pp. L1194-
L1196, Nov.(2002).
[11]S.Muthukumar, H. Sheng, J. Zhong, Z. Zhang,
N. W. Emanetoglu,and Y. Lu, “ Selective
MOCVD growth of ZnO nanotips,” IEEE
Tran. Nanotechonlogy, vol. 2, no.1, pp. 50-
54, Mar. (2003).
[12]J. Zhao and M. A. Green, IEEE Trans. Electron
Devices 38, 1925 (1991).
[13]S. E. Lee, S. W. Choi and J. Yi, Thin Solid
Films 376, 208 (2000).
[14]S. J. Wilson and M. C. Hutley, Opt. Acta 29,
993 (1982).
[15]A. Poruba, A. Fejfar, Z. Remes, J. Springer,
M. Vanecek, J. Kocka, J. Meier, P. Torres and
A. Shah, J. Appl. Phys.88,148 (2000).
[16]Y. Kananmori, H. Kikuta and K. Hane, Jpn. J.
Appl. Phys. 39, L735 (2000)
[17]C.Aydin, A. Zaslavsky, G. J. Sonek and J.
Goldstein, Appl. Phys. Lett.80, 2242 (2002).
[18]I. Ohlidal, F. Lukes and K. Navratil, Surf.
Sci. 45,91 (1974).
[19]M. G. Moharam, Proc. SpIE 883, 8 (1988).
[20]P. Beckmann, A. Spizzichno: The Scattering of
Electromagnetic Waves from Rough Surfaces,
(Peergamon Press, Oxford 1963),Chapter5.
[21]D. H. Raguin and G. M. Morris, Appl. Opt.32,
1154 (1993).
[22]A. A. Abouelsaood, M. Y. Ghannam and A. S. Al
Omar, J. Appl. Phys.84, 5795 (1998).
[23]T. Yang, S. Goto, M. Kawata, K. Uchida, A.
Niwa and J. Gotoh,Jpn.J. Appl. Phys. 37,
L1105 (1998).
Chapter4 References
[1] J. I. Pankove: Mater. Res. Soc. Symp. Proc.
162 515 (1990)
[2] E. Monroy, E. Munoz, F. J. Sanchez, F. Calle,
E. Calleja, B. Beaumout,P. Gibart, J. A.
Munoz and F. Cusso: Semicond. Sci. Technol. 13
1042 (1998).
[3] G. Parish, S. Keller, P. Kozodoy, J. A.
Ibbetson, H. Marchand, P. T. Fini, S. B.
Fleischer, S. P. DenBarrs and U. K. Mishra:
Appl. Phys. Lett. 75 247 (1999).
[4] E. Monroy, M. Hamilton, D. Walker, P. Kung,
F. J. Sanchez and M.Razeghi: Appl. Phys.
Lett. 74 1171 (1999).
[5] A. Osinsky, S. Gangoopadhyay, R. Gaska, B.
Williams, M. A. Khan, D. Kuksenkov and
H.Temkin: Appl. Phys. Lett. 71 2334 (1997).
[6] Q. Chen, J. W. Yang, A. Osinsky, S.
Gangopadhyay, B. Lim, M. Z.
Anwar, M. Asif Khan, D. Kuksenkov and H.
Temkin: Appl. Phys.Lett. 70 2277(1997).
[7] Z. C. Huang, J. C. Chen and D. Wickenden: J.
Cryst. Growth 170 362 (1997).
[8] Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J.
Chang and J. K. Sheu: Jpn. J.Appl. Phys. 40
2996 (2001).
[9] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi,
J. Y. Chi, C. A. Chang, J. K. Sheu and J. F.
Chen: IEEE Photonics Technol. Lett. 13 848
(2001).
[10]C. Pernot, A. Hirano, M. Iwaya, T.
Detchprohm, H. Amano and I. Akasaki: Jpn. J.
Appl. Phys. 38 L 487 (1999).56
[11]Narukawa Y, Kawakami Y, Funato M, Fujita S,
Nakamura S. Appl Phys Lett;70:981 (1997).
[12]O_Donnell KP, Martin RW, Middleton PG. Phys
Rev Lett ;82:237 (1999).
[13]Damilano B, Grandjean N, Dalmasso S, Massies
J. Appl Phys Lett;75:3751 (1999).
[14]Tachibana K, Someya T, Arakawa Y. Appl Phys
Lett;74:383 (1999).
[15]Adelmann C, Simon J, Feuillet G, Pelekanos
NT, Daudin B. Appl Phys Lett;76:1570 (2000).
[16]Ji LW, Su YK, Chang SJ, Wu LW, Fang TH, Chen
JF,, Xue QK, Chen SC. J Cryst Growth;249:144
(2003).
[17]K. Tachibana, T. Someya and Y. Arakawa: Appl.
Phys. Lett. 75 2605 (1999).
[18]K. Tachibana, T. Someya and Y. Arakawa: IEEE
J. Sel. Top.Quantum Electron. 6 475 (2000).
[19]L. W. Ji, Y. K. Su, S. J. Chang, S. C. Hung,
C. K. Wang, T. H. Fang, T. Y. Tasi, Ricky
Chuang, Wei Su and J. C. Zhong: JJAP Vol.43,
No.2 518 (2004)
[20]Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai,
C. S. Chang, S. C. Shei,S. J. Hsu, C. H. Liu,
U. H. Liaw, S. C. Chen and B. R. Huang:
IEEE Photon. Technol. Lett. 14 1668 (2002).
[21]Y. K. Su, S. J. Chang, C. H. Ko, J. F. Chen,
W. H. Lan, W. J. Lin,Y. T. Cherng and J.
Webb: IEEE Trans. Electron Devices 49 1361
(2002).
[22]J. K. Sheu, M. L. Lee, C. J. Tun, C. J. Kao,
L. S. Yeh, S. J. Chang and G. C. Chi: IEEE J.
Sel. Top. Quan. Electron. 8 767 (2002).
[23]S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu,
J. K. Sheu, T. C. Wen,W. C. Lai, J. F. Chen
and J. M. Tsai: IEEE J. Sel. Top. Quantum
Electron. 8 744 (2002).
[24]C. H. Chen, S. J. Chang, Y. K. Su, J. K.
Sheu, J. F. Chen, C. H. Kuo and Y. C. Lin:
IEEE Photon. Technol. Lett. 14 908 (2002).
[25]T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su,
W. C. Lai C. H. Kuo,C. H. Chen, J. K. Sheu
and J. F. Chen: IEEE Trans. Electron
Devices 49 1093 (2002).
[26]C. H. Kuo, S. J. Chang, Y K. Su, J. F. Chen,
L. W. Wu, J. K. Sheu, C. H. Chen and G. C.
Chi: IEEE Electron. Device Lett. 23 240(2002).
[27]S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen,
C. H. Liu and U. H. Liaw: IEEE J. Sel. Top.
Quantum Electron. 8 278 (2002).
[28]C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi,
J. K. Sheu and J. F. Chen: IEEE J. Sel. Top.
Quantum Electron. 8 284 (2002).
[29]C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi,
J. K. Sheu, J. F. Chen, C. H. Liu and U. H.
Liaw: IEEE Electron. Device Lett. 23 13(2002).
[30]P. Ball and L. Garwin, Nature ~London 355,
301 ~(1992).