簡易檢索 / 詳目顯示

研究生: 蔡政緯
Tsai, Cheng-Wei
論文名稱: 以聚苯乙烯披覆於平板式一氧化碳感測器之研究
Studies on the Coating of the Planar Carbon Monoxide Sensor with Polystyrene
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 123
中文關鍵詞: 聚苯乙烯平板式感測器一氧化碳
外文關鍵詞: Planar sensor, Carbon Monoxide, Polystyrene, Nafion
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   一氧化碳為無色、無味、無臭的有毒氣體,近年來發生一氧化碳中毒的事件頻傳,尤其以家庭中電器使用不當所引起居多,因此發展能在常溫下偵測一氧化碳的感測器是必須的。本研究中採用平板式一氧化碳感測器,為三極式的感測系統,將白金與黃金電極利用濺鍍法製備在同一側,再以錫修飾感測電極,用以防止一氧化碳毒化,並採用再披覆成膜的Nafion®(recast Nafion®)為固態電解質,因為可隨著電極任意改變成膜形狀,使具有微小化的潛力。再以疏水性材料聚苯乙烯披覆在Nafion®膜上,使減緩Nafion®膜內水分的損耗,進而提高感測器的穩定性。

      研究結果顯示,經過聚苯乙烯披覆的電極,因為擴散層增厚,導致在氣體流速90 ml/min,800 ppm CO,濕度為100 %R.H.時的感測電流僅為0.827 μA,靈敏度為0.75 nA / ppm,皆小於未披覆聚苯乙烯的電極,而應答與回復時間則隨著擴散層變厚也隨之增長,雖然在靈敏度、應答時間等皆劣於未披覆聚苯乙烯的電極。然而,在100 %R.H.的環境下,連續感測800 ppm的一氧化碳,聚苯乙烯的披覆使電極的衰退率比未披覆的電極在連續感測7次後降低了約20 %,除此之外,經過長時間2週左右的穩定性測試顯示,聚苯乙烯披覆的電極之衰退率更是比未披覆電極降低了約40 %。顯然,聚苯乙烯的披覆確實有減緩Nafion®膜內水分的損耗,使感測電流穩定性提高。即使使用完全不增濕的乾燥氣體進行感測時,雖然感測電流衰退程度比使用增濕氣體時明顯,但是,經過披覆聚苯乙烯的電極仍然具有較低的電流衰退率。

      在模擬空氣的環境下進行感測,雖然在氣體流速90 ml/min,800 ppm CO,濕度100 %R.H.時,會因為氧氣存在導致感測電流與靈敏度降低,然而,披覆聚苯乙烯的電極感測特性卻受到氧氣的影響甚小,更適用於真實環境中使用,這可能是因為擴散層變厚,不僅能減緩Nafion®膜內水分的損耗,亦能降低氧氣的穿透。此外,空氣中的氧氣會與氫離子反應產生水,藉此補充陽極反應時消耗的水分。若經過聚苯乙烯的披覆,使生成的水分不易揮發,幾乎保存在Nafion®膜內,因此進行連續7次感測穩定性測試時,衰退率僅為2.1 %,即使未經披覆的電極亦能使衰退率有明顯的提升。由此得知,本感測系統在真實環境中具有較佳的穩定性,經過聚苯乙烯披覆之後,可使其感測電流穩定性更佳,使用壽命更長。

     Carbon monoxide is a toxic compound, featuring colorless, tasteless, odorless gas. CO intoxication repeatedly occurs over the years, especially due to the improper use of household electric appliances. Hence, to develop a sensor capable of CO detection at room temperature is an essential issue nowadays. This study focused on planar CO sensor composed of three electrodes, two of which were sputtered Pt and sputtered Au on the same side. The sensing electrode was further modified by Sn in order to prevent itself from the poisoning of CO. The solid electrolyte in this system was recast Nafion® film, for it could be reshaped to fit in with electrode profile, even when miniaturized. The coating of hydrophobic polymer, polystyrene, over Nafion® was an important final step, which actually enhanced the stability of the sensor by detaining water within Nafion® film.

     In this study, the sensing current of 800 ppm CO on PS-coated electrode was 0.827A at gas flow rate of 90ml/min in 100 %R.H., resulting in a sensitivity of 0.75nA / ppm. The sensitivity of PS-coated electrode was lower than that of the uncoated one because the diffusion layer was consequently thickened by PS coating. Response time and recovery time were extended for the same reason as well. When continuously sensing 800 ppm CO at 100%R.H., the current decay percentage of PS-coated electrode reduced by 20% compared to that of uncoated electrode after seven cycles. Moreover, the long-term stability test showed that the current decay percentage of PS-coated electrode reduced by 40% than that of uncoated electrode around two weeks or so. The idea of PS coating turned out to be effective on the detainment of water evaporation within Nafion® so as to enhance the stability of sensing current. Current decayed in both cases when the sensing was accomplished in dry gas. PS-coated electrode was still promising since it showed less current decay.

     In simulated real air, both sensing current and sensitivity of 800 ppm CO at 90 ml/min gas flow rate and 100 %R.H. were lower then in O2-free environment. PS coating was believed to restrain not only water loss but the penetration of oxygen as well on account of the expanding diffusion layer. The effect of oxygen on sensing was less significant in the case of PS-coated electrode, which made it a better sensor candidate in real life. Besides, oxygen in simulated air reacted with hydrogen ions to formed water. It complemented the water consumption at anode. With PS coating, water was effectively kept inside Nafion® film. The conserved water accounted for small current decay percentage for both cases. The least current decay reached 2.1 % when continuously sensing CO at PS-coated electrode after seven cycles. The conclusion goes that the coating of PS improves sensing current, stability, and life expectancy.

    中文摘要 ..........................................I 英文摘要 ..........................................III 目 錄 .............................................V 表目錄 ............................................VIII 圖 目 錄 ..........................................IX 符 號 說 明 .......................................XI 致謝 ..............................................XIII 第一章 序 論..........................................1 1.1 一氧化碳簡介..................................1 1.2 平板式氣體感測器之種類與原理..................3 1.2.1 電位式平板氣體感測器..........................3 1.2.2 電流式平板氣體感測器..........................4 1.2.3 平板式一氧化碳感測器..........................6 1.3 Nafion在感測器上之應用......................9 1.3.1 Nafion簡介..................................9 1.3.2 Nafion的前處理與應用........................12 1.4 白金電極的改質................................15 1.4.1 釕對白金電極之修飾............................15 1.4.2 錫對白金電極之修飾............................16 1.5 高分子聚合物在氣體感測器上之應用..............17 1.5.1 聚苯胺在氣體感測器上之應用....................17 1.5.2 聚苯乙烯在氣體感測器上之應用..................19 1.6 研究動機......................................20 第二章 原 理..........................................21 2.1 一氧化碳在白金上之反應機構....................21 2.2 一氧化碳感測之數學模式........................24 2.2.1 質傳控制區....................................24 2.2.2 動力控制區....................................31 2.2.3 質傳和動力混合控制區..........................32 2.3 錫催化一氧化碳之反應機構......................33 2.4 聚苯乙烯之修飾行為............................34 第三章 實驗設備與步驟..................................35 3.1 藥品與材料....................................35 3.2 儀器設備......................................36 3.3 感測元件之製備................................37 3.3.1 氧化鋁陶瓷基板之前處理........................37 3.3.2 感測器電極之製備..............................37 3.3.3 外接電路之連結................................37 3.3.4 錫修飾白金感測電極(Pt/Sn)之製備...............38 3.3.5 平板式一氧化碳感測器之製備....................38 3.3.6 聚苯乙烯披覆之製備............................41 3.4 感測電極之電化學特性分析......................41 3.4.1 電極活化方式..................................41 3.4.2 感測系統之組裝................................43 3.4.3 循環伏安法(Cyclic Voltammertry)...............43 3.4.4 極化曲線(Polarization Curve)..................43 3.4.5 靈敏度測試....................................46 3.4.6 穩定性測試....................................47 第四章 結果與討論.....................................49 4.1 Pt/Sn感測電極之特性分析.......................49 4.1.1 循環伏安法....................................49 4.1.2 定電位法與極化曲線............................49 4.1.3 電極活化方式的探討............................54 4.1.4 應答時間與回復時間............................57 4.1.5 靈敏度測試....................................57 4.1.5 穩定性測試....................................61 4.2 聚苯乙烯披覆之感測行為........................65 4.2.1 定電位法與極化曲線............................65 4.2.2 應答時間與回復時間............................69 4.2.3 靈敏度測試....................................69 4.2.4 穩定性測試....................................69 4.3 氣體流速對感測一氧化碳之影響..................77 4.3.1 對靈敏度之影響................................77 4.3.2 對應答時間之影響..............................81 4.4 聚苯乙烯披覆下濕度對電極的影響................83 4.4.1 乾燥氣體對一氧化碳之感測行為..................83 4.4.2 濕度對穩定性的影響............................85 4.5 模擬空氣下聚苯乙烯披覆對感測之影響............90 4.5.1 對一氧化碳之感測行為..........................90 4.5.1a 定電位法......................................90 4.5.1b 應答時間與回復時間............................90 4.5.1c 靈敏度測試....................................90 4.5.2 穩定性測試....................................93 4.5.2a 增濕與乾燥氣體下穩定性測試....................93 4.5.2b 長時間穩定測試................................96 4.6 聚苯乙烯濃度的影響............................104 4.6.1 聚苯乙烯濃度對接觸角(contact angle)的影響.....104 4.6.2 對一氧化碳之感測行為..........................104 4.6.3 穩定性測試....................................104 4.7 綜合與討論....................................110 第五章 結論與建議.....................................115 5.1 結論..........................................115 5.2 建議事項......................................116 參考文獻...............................................117

    1.PADI, 壓縮空氣的品質http://www.water-world.com.tw/tech/air.htm, 連線日期:
    6.25.2005.
    2.自由電子新聞王, 健康醫療http://www.libertytimes.com.tw/2001/new/feb/1/today-
    m1.htm, 連線日期:6.25.2005.
    3.鵬騰科技全球資訊網, http://www.microsense.com.tw/co.htm, 連線日期:6.27.2005.
    4.勞工安全衛生研究所, 局限空間作業之一氧化碳中毒案例剖析
    http://www.iosh.gov.tw/data/f2/sp65-3.htm, 連線日期:6.27.2005.
    5.勞工作業環境空氣中有害物容許濃度標準,
    http://web.pthg.gov.tw/social/service/s04/lll/s04_n1/n008.htm, 連線日期:
    7.12.2005.
    6.中華民國環保法規資料中心, 空氣污染防制法施行細則, http://law.epa.gov.tw/zh-
    tw/laws/495268338.html, 連線日期:7.12.2005.
    7.Baofu Quan, Chengsong Sun, Zhe Wang, Haiying Quan, Lijun Zhou, Yunpeng Li,
    Planar heat-wire type CH4 gas sensor, Sensors and Actuators B 66 243–245
    (2000).
    8.G. Reinhardt, I. Rohlfs, R. Mayer, W.Göpel, Selectivity-optimization of
    planar amperometric multi-electrode sensors: identification of O2 , NOx and
    combustible gases in exhausts at high temperatures, Sensors and Actuators B
    65 76–78 (2000).
    9.Shigeki Kuwata, Yoshihiko Sadaoka, Detection of gaseous hydrogen peroxide
    using planar-type amperometric, Sensors and Actuators B 65 325–326 (2000).
    10.Véronique Coillard, Hélène Debéda, Claude Lucat, Francis Ménil, Nitrogen
    monoxide detection with a planar spinel coated amperometric sensor, Sensors
    and Actuators B 78 113–118 (2001).
    11.A. Kokuen, K.H. Takahashi, Y.K. Nakanouchi, Hot wire type gas sensor of
    thin film tin oxide, Chem. Sens. 6 Suppl. A 45–48 (1990).
    12.曾明漢,觸媒燃燒型氣體感測器,材料與社會,第68期,第57~61頁(1992)。
    13.陳一誠,金屬氧化物半導體型氣體感測物,材料與社會,第68期,第62~66頁(1992)。
    14.顧志鴻,MOSFET氣體感測器,材料與社會,第68期,第71~77頁(1992)。
    15.眭曉林,固態化學感測元件之積體化設計,材料與科學,第60期,第56~61頁 (1991)。
    16.Y. S. Fung and C. C. Wong, Determination of Carbon Monoxide in Ambient Air
    Using Piezoelectric Crystal Sorption Detection, Analytica Chimica Acta,
    456, 227-239 (2002).
    17.T. Kobayashi, M. Haruta, H. Sano and B. Delmon, Optical Detection of CO in
    Air Through Catalytic Chromism of Metal-Oxide Thin Films, Proc. 3rd Int.
    Meet. Chemical Sensors, Cleveland, OH, 318-321 (1990).
    18.A. Yasuda, T. Fujioka, N. Yamaga and S. Kusanagi, Reactive Polymers, 15,
    203-207 (1991).
    19.A. Yasuda, K. Doi, N. Yamaga, T. Fujioka and S. Kusanagi, Mechanism of the
    Sensitivity of the Planar CO Sensor and Its Dependency on Humidity, J.
    Electrochem. Soc., 139, 11, 3224-3229 (1992).
    20.Ayumu Yasuda, Noriyuki Yamaga, Kenji Doi, Tooru Fujioka, Sensor and
    Actuators B 21 229-236 (1994).
    21.Ayumu Yasuda, Takeo Shimidzu, Reactive & Function Polymers 41 235-243
    (1999).
    22.P.D.van der Wal, N.F.de Rooij, M.Koudelka-Hep, Extremely stable Nafion
    based carbon monoxide sensor, Sensor and Actuators B 35-36 119-123 (1996).
    23.P. Gode, G. Lindbergh and G. Sundholm, In-Situ Measurements of Gas
    Permeability in Fuel Cell Membranes Using a Cylindrical Microelectrode,
    Journal of Electroanalytical Chemistry, 518, 115-122 (2002).
    24.E. J. Taylor, E. B. Anderson and N. R. K. Vilambi, Preparation of High-
    Platinum-Utilization Gas Diffusion Electrodes for Proton-Exchange- Membrane
    Fuel Cells, J. Electrochem. Soc., 139, 5 (1992).
    25.C. Yang b, P. Costamagn, S. Srinivasan, J. Benziger, A.B. Bocarsly,
    Approaches and technical challenges to high temperature operation of proton
    exchange membrane fuel cells, Journal of Power Sources 103 1–9 (2001).
    26.Ki-Chul Kim, Sung M. Cho, Hoo-Gon Choi, Detection of ethanol gas
    concentration by fuel cell sensors fabricated using a solid polymer
    electrolyte, Sensors and Actuators B 67 194–198 2000
    27.A. Eisenberg, and H. L. Yeager, Perfluorinsted Ionomer Membranes, ACS Symp.
    Ser., NO180, American Chemical Society, Washington DC (1982).
    28.V. N. Fateev, O. V. Archakov, E. K. Lyutikova, L. N. Kulikova and V. I.
    Porembskii, Water Electrolysis in Systems with Solid Polymer Electrolyte,
    Russian J. Electrochem., Vol. 29, pp. 702~ 709 (1993).
    29.J. Jorissen, Ion Exchange Membranes as Solid Polymer Electrolytes in
    Electro-Organic Method to Organic Electrochemistry(XIV), J. Electrochemica
    Acta, Vol. 41, No. 4, pp. 553 (1996).
    30.Jing-Shan Do, Kanq-Jiuan Wu, Amperometric nitric oxide gas sensor:
    preparation of Au/SPE and sensing behavior, Sensors and Actuators B 67 209–
    216 (2000).
    31.Jing-Shan Do, Wen-Biing Chang, Amperometric nitrogen dioxide gas sensor:
    preparation of PAn/Au/SPE and sensing behaviour, Sensors and Actuators B 72
    101-107 (2001).
    32.Kuo-Chuan Ho, Wen-Tung Hung, An amperometric NO2 gas sensor based on Pt-
    Nafion electrode, Sensors and Actuators B 79 11-16 (2001).
    33.Jing-Shan Do, Wen-Biing Chang, Amperometric nitrogen dioxide gas sensor
    based on PAn/Au/Nafion® prepared by constant current and cyclic voltammetry
    methods, Sensors and Actuators B 101 97–106 (2004).
    34.M. Ludvigsson, J. Lindgren, J. Tegenfeldt, FTIR study of water in cast
    Nafion films, Electrochimica Acta 45 2267–2271 (2000).
    35.Z. Siroma, N. Fujiwara, T. Ioroi, S. Yamazaki, K. Yasuda, Y. Miyazaki,
    Dissolution of Nafion® membrane and recast Nafion® film in mixtures of
    methanol and water, Journal of Power Sources 126 41–45 (2004).
    36.Chunbo Yu, Yujiang Wang, Kaifeng Hua, Wei Xing, Tianhong Lu,
    Electrochemical H2S sensor with H2SO4 pre-treated Nafion membrane as solid
    polymer electrolyte, Sensors and Actuators B
    86 259-265 (2002).
    37.Jayashri Gopalakrishna, Wojtek Wlodarski, Peter Iles, Performance of Solid
    Polymer Electrolyte based Oxygen Sensor without External Humidification,
    Conference on Optoelectronic & Microelectronic Materials and Devices,
    Proceedings, COMMAD, p 376-379 (1999).
    38.Zempachi Ogumi, Tohru Kuroe and Zen-Ichiro Takehara, Gas Permeation In SPE
    Method-Ⅱ. Oxygen and Hydrogen Permeation Through Nafion, J. Electrochem.
    Soc., Vol. 132, No. 11, pp. 2601~2605 (1985).
    39.T. Arimura, D. Ostrovskii, T. Okada and G. Xie, The Effect of Additives on
    the Ionic Conductivity Performances of Perfluoroalkyl Sulfonated Ionomer
    Membranes, Solid State Ionics, 118, 1-10 (1999).
    40.Der-Shing Lee, Tsung-Kwei Liu, Characteristics of nanosized ruthenium metal
    by chemical reduction method, Journal of Non-Crystalline Solids 311 323–
    327 (2002)
    41.Yuichi Sato, Koichi Yomogid, Takeshi Nanaumi, Koichi Kobayakaw Yasuhiko
    Ohsaw and Mikio Kawaib, Electrochemical Behavior of Activated-Carbon
    Capacitor Materials Loaded with Ruthenium Oxide, Electrochemical and Solid-
    State Letters, 3 (3) 113-116 (2000).
    42.A.Oliveira Neto, E.G. Franco, E.Arico, M.Linardi , E.R. Gonzalez, Electro-
    oxidation of methanol and ethanol on Pt–Ru/C and
    Pt–Ru–Mo/C electrocatalysts prepared by Bönnemann’s method, Journal of
    the European Ceramic Society 23 2987–2992 (2003).
    43.G.-Q. Lu, P. Waszczuk, A. Wieckowski, Oxidation of CO adsorbed from CO
    saturated solutions on the Pt(111)/Ru electrode, Journal of
    Electroanalytical Chemistry 532 49/55 (2002).
    44.Naoki Toshima, Kazutaka Hirakawa, Polymer-protected Pt/Ru bimetallic
    cluster catalysts for visible-light-induced hydrogen generation from water
    and electron transfer dynamics, Applied Surface Science 121/122 534-537
    (1997).
    45.M.-S. Löffler, H. Natter, R. Hempelmann, K. Wippermann, Preparation and
    characterisation of Pt /Ru model electrodes for the direct methanol fuel
    cell, Electrochimica Acta 48 3047-3051 (2003).
    46.S.R. Brankovic, J. McBreen, R.R. Adžić, Spontaneous deposition of Pt on the
    Ru(0001) surface, Journal of Electroanalytical Chemistry 503 99–104 (2001).
    47.N. S. Marinković, J. X. Wang,H. Zajonz, and R. R. Adzic, Unusual Stability
    of Carbon Monoxide Adsorbed on the Ru(0001) Electrode Surface,
    Electrochemical and Solid-State Letters, 3 (11) 508-510 (2000).
    48.K.A. Friedrich, K.-P. Geyzers, U. Linke, U. Stimming, J. Stumper, CO
    adsorption and oxidation on a Pt(111) electrode modified by ruthenium
    deposition: an IR spectroscopic study, Journal of Electroanalytical
    Chemistry 402 123-128 (1996).
    49.Cecilia Bracchini, Valerio Indovina , Sergio De Rossi , Leonardo Giorgi,
    Anodic catalysts for polymer electrolyte fuel cells: the catalytic activity
    of Pt/C, Ru/C and Pt-Ru/C in oxidation of CO by O2, Catalysis Today 55 45–
    49 (2000).
    50.J. Llorca, N. Homs , J. Araňa, J. Sales, P. Ramırez de la Piscina, FTIR
    study of the interaction of CO and CO2 with silica-supported PtSn alloy,
    Applied Surface Science 134 217–224 (1998).
    51.Sunita Rani, A. Jayaraman, L.D. Sharma, G. Murali Dhar, T.S.R. Prasada Rao,
    Cyclic voltammetric studies of alumina supported monometallic Pt and
    bimetallic Pt-Sn catalysts using carbon paste electrodes, Journal of
    Electroanalytical Chemistry 495 62–70 (2000).
    52.Yu Morimoto, Erncst. B. Teager, CO oxidation on smooth and high area Pt, Pt-
    Ru and Pt-Sn electrodes, Journal of Electroanalytical Chemistry 441 77-81
    (1998).
    53.Yu Morimoto, Ernest B. Yeager, Comparison of methanol oxidations on Pt,
    Pt|Ru and Pt|Sn electrodes, Journal of Electroanalytical Chemistry 444 95-
    100 (1998).
    54.Eve S. Steigerwalt, Gregg A. Deluga, David E. Cliffel, and C. M. Lukehart,
    A Pt-Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative
    Performance as a Direct-Methanol Fuel Cell Anode Catalyst, J. Phys. Chem.
    B, 105, 8097-8101 (2001).
    55.Horst Massong, Hongsen Wang, Gabor Samjeské, Helmut Baltruschat, The co-
    catalytic effect of Sn, Ru and Mo decorating steps of Pt(111) vicinal
    electrode surfaces on the oxidation of CO, Electrochimica Acta 46 701–707
    (2000).
    56.K. Wang, H. A. Gasteiger, N. M. Markovic, and P. N. Ross, Jr, On the
    reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn
    alloy versus Pt-Ru alloy surfaces, Electrochimica Acta Vol. 41, No. 16,pp.
    2587-2593 (1996).
    57.W. T. Nopporn, J.-M. Léger, C. Lamy, Electrocatalytic oxidation of carbon
    monoxide at lower potentials on platinum-based alloys incorporated in
    polyaniline, Journal of Electroanalytical Chemistry 408 141-147 (1996).
    58.Kukla AL, Shirshov YM, Piletsky SA. Sens Actua B, 37:135 1996
    59.S.C.K. Misra, Prafull Mathur, B.K. Srivastava, Vacuum-deposited
    nanocrystalline polyaniline thin film sensors for detection of carbon
    monoxide, Sensors and Actuators A 114 30–35 (2004).
    60.V. Dixit, S.C.K. Misra, B.S. Sharma, Carbon monoxide sensitivity of vacuum
    deposited polyaniline semiconducting thin films, Sensors and Actuators B
    104 90–93 (2005).
    61.Nataporn Densakulpraserta, Ladawan Wannatonga, Datchanee Chotpattananonta,
    Piyanoot Hiamtupa, Anuvat Sirivata,., Johannes Schwankb, Electrical
    conductivity of polyaniline/zeolite composites and synergetic interaction
    with CO, Materials Science and Engineering B 117 276–282 (2005).
    62.C. Chuapradita, L. Ruangchuay Wannatongb, D. Chotpattananonta, Piyanoot
    Hiamtupa, A. Sirivata, J. Schwankc, Polyaniline/zeolite LTA composites and
    electrical conductivity response towards CO, Polymer 46 947–953 (2005).
    63.Meral Karakýs,1 Levent Aksu and Mehmet Sac¸ak, Polypyrrole/polyaniline
    conductive films obtained electrochemically on polycarbonatecoated platinum
    electrodes, Society of Chemical Industry. Polym Int 0959–8103 2002.
    64.Nasser Arsalani, Mohammad Hayatifar, Preparation and Characterization of
    Conductive Latex Based on Polyaniline–Perlite Composite, Journal of
    Applied Polymer Science, Vol. 93, 2528–2531 (2004).
    65.洪偉銘, 應用固態高分子薄膜電解質於電化學氣體感測器之研究, 朝陽科技大學應用化
    學系碩士論文(2004).
    66.Jun Rong Li , Jia Rui Xu , Ming Qiu Zhang , Min Zhi Rong, C arbon
    black/polystyrene composites as candidates for gas sensing materials,
    Carbon 41 2353–2360 (2003).
    67.中國科學院, 化學所利用聚苯乙烯製備出超疏水塑料薄膜,
    http://www.cas.ac.cn/html/Dir/2004/09/27/8048.htm, 連線日期: 7.13.2005.
    68.曾坤億,半乾式一氧化碳感測器之研究,國立成功大學化學工程研究所碩士論文
    (1999)。
    69.W. F. Lin, M. S. Zei, m. Eiswirth and G. Ertl, Electrocatalytic Activity of
    Ru-Modified Pt(111) Electrodes toward CO Oxidation, The Journal of Physical
    Chemistry B, 103, 33, 6968-6977 (1999).
    70.V. N. Fateev, E. K. Lyutikova and R. Amadelli, Oxidation of Carbon Monoxide
    on Platinum in Composite Electrodes Based on Solid Polymer Electrolytes,
    Russian Journal of Electrochemistry, 35, 2, 183-187 (1999).
    71.S. A. Bilmes and A. J. Arvia, The Electro-oxidation of CO-adsorbates on
    Different Platinum Electrodes in Acid Solution, Journal of
    Electroanalytical Chemistry, 361, 159-167 (1993).
    72.G. Kohlmayr and P. Stonehart, Adsorption Kinetics for Carbon Monoxide on
    Platinum in Hot Phosphoric Acid, Electrochemica Acta, 18, 211-223 (1973).
    73.S. Gilman, The Mechanism of Electrochemical Oxidation of Carbon Monoxide
    and Methanol on Platinum. Ⅱ. The “Reactant-pair” Mechanism for
    Electrochemical Oxidation of Carbon Monoxide and Methanol, J. Phy. Chem.,
    68, 70-80 (1964).
    74.G. Estiu, S. Maluendes, E. A. Castro and A. J. Arvia, A Quantum-Chemistry
    Approach to the Electro-Oxidation Mechanism of Adsorbed Carbon Monoxide on
    Platinum Single-Crystal Clusters, J. Electroanal. Chem., 238, 303-318
    (1990).
    75.B. Beden and C. Lamy, The electrooxidation of CO: A Test Reaction in
    Electrocatalysis, Electrochimica Acta, 35, 4, 691-704 (1990).
    76.P. Meriaudeau, C. Naccache, A. Thangaraj, C. L. Bianchi, R. Carli, V.
    Vishvanathan and S. Narayanan, Studies on PtxSny Bimetallics in NaY Ⅰ.
    Preparation and Characterization, Journal of Catalysis, 154, 345-354 (1995).
    77.E. P. M. Leiva, E. Santos, M. C. Giordano, R. M. Cervino and A. J. Arvia,
    Voltammetric Electro-Oxidation of Carbon Monoxide Previously Adsorbed on
    Electrochemically Modified Platinum Electrodes, J. Electrochem. Soc., 133,
    1660-1662 (1986).
    78.蕭逢祥,平板式一氧化碳感測器之研究,國立成功大學化學工程研究所碩士論文
    (2002)。
    79.Michelle A. Brusatori and Paul R. Van Tassel, Biosensing under an Applied
    Voltage Using Optical Waveguide Lightmode Spectroscopy, Submitted to
    Biosensors and Bioelectronics April, 1-47 (2002).
    80.A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and
    applications”, Wiley, New York (2001).

    下載圖示 校內:2006-08-09公開
    校外:2006-08-09公開
    QR CODE