簡易檢索 / 詳目顯示

研究生: 林坤霖
LIN, KUN
論文名稱: 寬頻帶彩色錐形雷射器於染料摻雜單螺距膽固醇液晶薄膜之研究
Wide-banded color cone laser based on a dye-doped cholesteric liquid crystal with a single pitch
指導教授: 李佳榮
LEE, CHIA-RONG
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 78
中文關鍵詞: 膽固醇液晶
外文關鍵詞: cholesteric liquid crystal
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要是探討摻雜雷射的膽固醇液晶雷射元件,在這個實驗中我們發現膽固醇液晶雷射元件不只在正向有雷射輸出在cone角上也有雷射的輸出形式。我們也發現cone角雷射和膽固醇液晶的反射頻譜隨著角度的增大有往短波長移動的趨勢,而在約35度的時候有一圈特別強的光環產生。利用此機制,我們可以利用不同液晶和親手性分子比重來調配不同的膽固醇反射波段,藉以摻雜雷射雷料來達到不同顏色的雷射。我們也將模擬各個角度band edge的群速是趨近於零導致DOS變多,並測量不同角度出來的雷射是否和正向出來的雷射擁有相同的偏振。最後利用這個雷射元件我們將做出一個相當具有價值的角度調變雷射輸出波長元件。

    This investigation reports an anomalous wide-banded color cone lasing (WBCCL) emission based on a planar dye-doped cholesteric liquid crystal (DDCLC) film with a single pitch. The lasing wavelength (las) in the WBCCL emission distributes continuously from 676.7 to 595.6 nm (~80nm band) measured at continuously increasing oblique angle relative to the helical axis from 0o to 50o. It is demonstrated that the lasing wavelength is exactly coincided with the wavelength at the long wavelength edge (LWE) of the CLC reflection band (CLCRB) at each oblique angle, that is, the low-threshold edge lasing can occur not only at normal direction but also at oblique direction. The stimulated result of the dispersion relation at different oblique angles using Berreman’s 44 matrix method fit in well with the experimental results. Besides, the inhomogeneous distribution of the intensity of the WBCCL emission is attributed to two factors: the loss of the fluorescence from the multi-reflection and the fluorescence spectrum from the spontaneous emission of the dyes. A particularly bright lasing ring occurred at 35o can be explained qualitatively to be due to the double amplification of fluorescence under the overlap between the LWE of the CLCRB at 35o and the SWE of the CLCRB at 0o. Color cone lasing band can be tuned by changing the pitch of the DDCLC cell.

    第一章 簡介 §1-1 何謂液晶.......................................................... 1 §1-2 液晶的分類........................................................ 1 §1-3 液晶物理......................................................... 10 §1-3.1 液晶的光學異向性........................................... 10 §1-3.2 電場對絕緣向列相液晶的影響[ ................................ 14 第二章 理論介紹 §2-1 膽固醇液晶的光學特性............................................. 18 §2-2 外在影響膽固醇液晶螺距的因素..................................... 19 §2-3 膽固醇液晶:一維光子晶體.......................................... 22 §2-4 掺雜雷射染料的膽固醇液晶雷射..................................... 25 第三章 實驗方法與過程 §3-1 材料介紹............................................................................................................... 27 §3-2 樣品製作......................................................... 30 §3-2.1 測量不同角度下膽固醇液晶有不同反射頻譜..................... 30 §3-3 實驗裝置......................................................... 31 第四章 結果與討論 §4-1 膽固醇液晶的光學特性........................................................................................ 34 §4-1.1 觀察膽固醇液晶的布拉格反射頻譜中心隨不同角度的變化......... 34 §4-2 雷射激發染料摻雜膽固醇液晶雷射器之螢光光譜隨不同的偵測角而改變... 36 §4-2.1 膽固醇液晶雷射器之螢光光譜隨不同的角度而改變............... 37 §4-3 雷射激發染料摻雜膽固醇液晶雷射器之雷射輸出波長隨不同的偵測角而變化41 §4-3.1 膽固醇液晶雷射器之雷射輸出隨不同的偵測角而改變............. 42 §4-4 雷射激發染料摻雜膽固醇液晶雷射器隨不同角度之模擬................. 49 §4-4.1 雷射激發染料摻雜膽固醇液晶雷射器隨不同角度之光子密度模擬... 52 §4-5 雷射激發染料摻雜膽固醇液晶雷射器之雷射輸出光偏振狀態隨不同角度的探討 ...................................................................... 55 §4-6 雷射激發染料摻雜膽固醇液晶雷射器之雷射輸出光在不同波段........... 58 §4-7 觀察偏光顯微鏡下膽固醇液晶樣品置放放不同時間下的結構差異......... 60 第五章 結論與未來展望 §5-1 結論............................................................. 62 §5-2 未來展望......................................................... 64 參考文獻.............................................................. 66

    [1] P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals”, 2nded., Clarendon Press, Oxford (1993).
    [2] L. M. Blinov and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials”, Springer-Verlag Publishing Co., New York (1994).
    [3] B. Bahadur, “Liquid Crystals:Applications and Uses”, 1, World Scientific, Singapore (1990).
    [4] F. Reintzer, Monatsh. Chem. 9, 421 (1888).
    [5] Letter from F. Reintzer to O. Lehmann, reported by H. Kelker, Mol. Cryst. Liq. Cryst. 21, 1 (1973).
    [6] H.-S. Kitzerow, C. Bahr,”Chirality in Liquid Crystals”, Springer, New
    York (2001)
    [7] Andrew J. Lovinger, Karl R. Amundson and Don D. Davis, Chem. Mater. 6, 1726 (1994).
    [8] Grant R. Fowles,“Introduction to Modern Optics”, 2nd ed., University of Utah, New York (1975).
    [9] Iam-Choon Khoo,“Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena”, John Wiley & Sons Press, New York (1995).
    [10] 1.P. G. de Gennes and J. Prost,“The Physics of Liquid Crystals”, 2nd ed., Clarendon Press, Oxford (1993).
    [11] H. Kozawaguchi and M. Wada, Mol. Crys. Liq. Crys. 45, 55 (1978).
    [12] P. G. de Gennes, Sol. State Commun. 6, 163 (1968).
    [13] R. B. Meyer, Appl. Phys. Lett. 12, 281 (1968).
    [14] W. Helfrich, Phys. Rev. Lett. 23, 372 (1969).
    [15] L. M. Blinov and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials”, Springer-Verlag, New York (1994).
    [16] Jonathan P. Dowling, J. Appl. Phys. 75, 1896 (1994).
    [17] V. I. Koop, Opt. Lett. 23, 1707 (1998).
    [18] A. Munoz F, Opt. Lett. 26, 804 (2001).
    [19] L. S. Goldberg and J. M. Schnur, U.S. patent 3, 771,065 (1973).
    [20]Lev M.Blinov , J. Appl. Phys. 101,053104(2007)
    [21] Jonthan P. Dowling , J. Appl. Phys. 75, 1899(1994)

    下載圖示 校內:2010-08-01公開
    校外:2011-08-01公開
    QR CODE