| 研究生: |
李芯儀 Lee, Sin-Yi |
|---|---|
| 論文名稱: |
探討 Htt, PSME3, UCHL1 , PSMB5 對亨廷頓舞蹈症模式細胞中粒線體功能的影響 Investigate the effects of Htt, PSME3, UCHL1, and PSMB5 on mitochondrial function in Huntington's disease model cell |
| 指導教授: |
何盧勳
Her, Lu-Shiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | PSME3 、PSMB5 、UCHL1 、Htt 、粒線體功能 |
| 外文關鍵詞: | PSME3, PSMB5, UCHL1, Htt, mitochondrial function |
| 相關次數: | 點閱:121 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
亨廷頓舞蹈症是一種顯性遺傳的神經退化性疾病,其主要致病原因為 HTT 基因上的第一外顯子有不正常的 CAG 序列擴增,使 Htt 蛋白在氨基端產生poly Q 的片段擴增進而形成突變型 Htt 蛋白。該基因在突變之後影響的區域主要是腦部,包括紋狀體、大腦皮層等區域。已知突變型 Htt 蛋白對於細胞的影響包括蛋白酶體失活、粒線體損傷、蛋白團聚體堆積、氧化壓力上升、細胞自噬障礙等等,導致神經變性,最終使細胞死亡,目前仍沒有有效的治療方法。突變型細胞 STHdhQ111/Q111 中 Htt 的蛋白表現量比野生型細胞 STHdhQ7/Q7 來的低,且STHdhQ111/Q111 細胞也出現了明顯的粒線體損傷以及氧化壓力增加。由於粒線體的蛋白質約 99% 都來自於細胞核內基因,粒線體功能的維持仰賴於正常的粒線體蛋白輸入以及適當的粒線體質量控制,已經有研究發現蛋白酶體會透過影響粒線體質量控制來調控粒線體的功能以及完整性,而先前有研究指出在 HD 的模式細胞及模式小鼠中過度表達 PSME3/PA28γ 會增加細胞存活率以及蛋白酶體活性,且也有研究觀察到在人類成纖維細胞中過度表達 PSMB5/β5 可以增加蛋白酶體活性也能增加細胞在氧化壓力刺激的環境下的存活率。除了 PSME3/PA28γ 和 PSMB5/β5,已經有研究指出UCHL1功能降低可能會導致神經變性,實驗室已經發現在 STHdhQ111/Q111 細胞內 UCHL1 的表現量明顯低於 STHdhQ7/Q7,而近期的研究發現 UCHL1 透過影響 Mitofusin-2參與粒線體的質量控制。當在 STHdhQ111/Q111 細胞分別過度表達了 PSME3/PA28γ 和 PSMB5/β5,粒線體的膜電位都有回升,且粒線體中的超氧陰離子也有顯著的減少,然而只有過度表達 PSME3/PA28γ 才會減少細胞內的 ROS,過度表達 PSMB5/β5 會使細胞內氧化壓力上升。在 STHdhQ111/Q111 細胞中過度表達 UCHL1 主要影響的部分為氧化壓力,會降低粒線體內超氧陰離子以及細胞內的 ROS,但不影響粒線體膜電位。此外,已經有研究發現部分 Htt 蛋白分布於粒線體,且突變型 Htt蛋白會損傷粒線體的功能,我們在 Htt 蛋白表現量較低的 STHdhQ111/Q111 細胞中分別過度表達了野生型以及突變型的全長 Htt 蛋白,只有在過度表達野生型全長的 Htt 蛋白才會明顯減少粒線體內超氧陰離子。過度表達 PSME3/PA28γ、UCHL1、PSMB5/β5和野生型全長 Htt 蛋白能夠增強粒線體功能,且四種蛋白對於 HD 模式中的粒線體損傷影響皆不相同,而影響的機制需要再多加研究。
Huntington's disease (HD) is an inherited and dominant neurodegenerative disease. The main cause of the disease is the abnormal CAG sequence amplification in exon 1 of Htt gene, which leads to the extension of polyglutamine stretch (poly-Q) in Htt protein. Defective mitochondrial function and proteasome activities have been deserved in HD patients’ brains. Recent research showed that overexpression of PA28γ (an UPS activating protein) enhanced proteasome activity in HD neuronal model cells and HD YAC128 mice. Other research revealed that overexpression of PSMB5/β5 not only increased proteasomes activity but also increase the survival rate in oxidative stress in human fibroblasts. In addition to PSME3/PA28γ and PSMB5/β5, studies had pointed out that the reduced function of UCHL1 may lead to neurodegeneration. We found that overexpression of PA28γ not only improves mitochondrial function but also reduces oxidative stress. Overexpression of PSMB5 and UCHL1 improves mitochondrial function as well. Though the molecular function of Htt remains elusive, recent research revealed that Htt localized in mitochondria. Overexpression of full-length Htt did not affect mitochondrial membrane potential, but overexpressed wild type Htt (Htt 23QF-Myc) reduced mitochondrial ROS level. Further experiments are required to decipher the mechanism of Htt protein and UPS system in the mitochondrial defect and their role in the etiology of HD.
Albin, R.L., and D.A. Tagle. 1995. Genetics and molecular biology of Huntington's disease. Trends In Neurosciences. 18:11-14.
Bragoszewski, P., M. Turek, and A. Chacinska. 2017. Control of mitochondrial biogenesis and function by the ubiquitin–proteasome system. Open Biology. 7:170007.
Braun, R.J., and B. Westermann. 2017. With the help of MOM: mitochondrial contributions to cellular quality control. Trends In Cell Biology. 27:441-452.
Butterfield, D.A., K. Hensley, P. Cole, R. Subramaniam, M. Aksenov, M. Aksenova, P.M. Bummer, B.E. Haley, and J.M. Carney. 1997. Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer's disease. Journal of Neurochemistry. 68:2451-2457.
Carmo, C., L. Naia, C. Lopes, and A.C. Rego. 2018. Mitochondrial dysfunction in Huntington’s disease. Polyglutamine Disorders:59-83.
Castegna, A., V. Thongboonkerd, J. Klein, B.C. Lynn, Y.L. Wang, H. Osaka, K. Wada, and D.A. Butterfield. 2004. Proteomic analysis of brain proteins in the gracile axonal dystrophy (gad) mouse, a syndrome that emanates from dysfunctional ubiquitin carboxyl‐terminal hydrolase L‐1, reveals oxidation of key proteins. Journal of Neurochemistry. 88:1540-1546.
Cerqueira, F.M., S. von Stockum, M. Giacomello, I. Goliand, P. Kakimoto, E. Marchesan, D. De Stefani, A.J. Kowaltowski, E. Ziviani, and O.S. Shirihai. 2020. A new target for an old DUB: UCH-L1 regulates mitofusin-2 levels, altering mitochondrial morphology, function and calcium uptake. Redox Biology. 37:101676.
Chaturvedi, R.K., and M.F. Beal. 2013. Mitochondrial diseases of the brain. Free Radical Biology and Medicine. 63:1-29.
Choi, J.-E., J.-J. Lee, W. Kang, H.J. Kim, J.-H. Cho, P.-L. Han, and K.-J. Lee. 2018. Proteomic analysis of hippocampus in a mouse model of depression reveals neuroprotective function of ubiquitin c-terminal hydrolase L1 (UCH-L1) via stress-induced cysteine oxidative modifications. Molecular & Cellular Proteomics. 17:1803-1823.
Chondrogianni, N., C. Tzavelas, A.J. Pemberton, I.P. Nezis, A.J. Rivett, and E.S. Gonos. 2005. Overexpression of proteasome β5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. Journal of Biological Chemistry. 280:11840-11850.
D’Amico, D., V. Sorrentino, and J. Auwerx. 2017. Cytosolic proteostasis networks of the mitochondrial stress response. Trends in biochemical sciences. 42:712-725.
Day, I.N., and R.J. Thompson. 2010. UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Progress In Neurobiology. 90:327-362.
Franco-Iborra, S., A. Plaza-Zabala, M. Montpeyo, D. Sebastian, M. Vila, and M. Martinez-Vicente. 2021. Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease. Autophagy. 17:672-689.
Frank, M., S. Duvezin-Caubet, S. Koob, A. Occhipinti, R. Jagasia, A. Petcherski, M.O. Ruonala, M. Priault, B. Salin, and A.S. Reichert. 2012. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 1823:2297-2310.
Griffin, E.E., S.A. Detmer, and D.C. Chan. 2006. Molecular mechanism of mitochondrial membrane fusion. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 1763:482-489.
Guo, Q., B. Huang, J. Cheng, M. Seefelder, T. Engler, G. Pfeifer, P. Oeckl, M. Otto, F. Moser, and M. Maurer. 2018. The cryo-electron microscopy structure of huntingtin. Nature. 555:117-120.
Harper, P.S. 1992. The epidemiology of Huntington's disease. Human Genetics. 89:365-376.
Hipp, M.S., C.N. Patel, K. Bersuker, B.E. Riley, S.E. Kaiser, T.A. Shaler, M. Brandeis, and R.R. Kopito. 2012. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease. Journal of Cell Biology. 196:573-587.
Huang, Z.-N., J.-M. Chen, L.-C. Huang, Y.-H. Fang, and L.-S. Her. 2021. Inhibition of p38 Mitogen–Activated Protein Kinase Ameliorates HAP40 Depletion–Induced Toxicity and Proteasomal Defect in Huntington’s Disease Model. Molecular Neurobiology:1-20.
Huang, Z.-N., H.M. Chung, S.-C. Fang, and L.-S. Her. 2017. Adhesion Regulating Molecule 1 Mediates HAP40 Overexpression-Induced Mitochondrial Defects. International Journal of Biological Sciences. 13:1420-1437.
Huang, Z.-N., and L.-S. Her. 2017. The ubiquitin receptor ADRM1 modulates HAP40-induced proteasome activity. Molecular neurobiology. 54:7382-7400.
Jeon, J., W. Kim, J. Jang, O. Isacson, and H. Seo. 2016. Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington’s disease YAC128 mice. Neuroscience. 324:20-28.
Ježek, J., K.F. Cooper, and R. Strich. 2018. Reactive oxygen species and mitochondrial dynamics: the yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants. 7:13.
Jin, Y.N., and G.V. Johnson. 2010. The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease. Journal of Bioenergetics And Biomembranes. 42:199-205.
Jin, Y.N., V.Y. Yanxun, S. Gundemir, C. Jo, M. Cui, K. Tieu, and G.V. Johnson. 2013. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PloS One. 8:e57932.
Kleiger, G., and T. Mayor. 2014. Perilous journey: a tour of the ubiquitin–proteasome system. Trends In Cell Biology. 24:352-359.
Komander, D., M.J. Clague, and S. Urbé. 2009. Breaking the chains: structure and function of the deubiquitinases. Nature reviews Molecular Cell Biology. 10:550-563.
Langfelder, P., J.P. Cantle, D. Chatzopoulou, N. Wang, F. Gao, I. Al-Ramahi, X.-H. Lu, E.M. Ramos, K. El-Zein, and Y. Zhao. 2016. Integrated genomics and proteomics define huntingtin CAG length–dependent networks in mice. Nature Neuroscience. 19:623.
Larsen, C.N., B.A. Krantz, and K.D. Wilkinson. 1998. Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry. 37:3358-3368.
Lee, J., S. Giordano, and J. Zhang. 2012. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochemical Journal. 441:523-540.
Liu, W., X. Duan, X. Fang, W. Shang, and C. Tong. 2018. Mitochondrial protein import regulates cytosolic protein homeostasis and neuronal integrity. Autophagy. 14:1293-1309.
Lombardino, A.J., X.-C. Li, M. Hertel, and F. Nottebohm. 2005. Replaceable neurons and neurodegenerative disease share depressed UCHL1 levels. Proceedings of the National Academy of Sciences. 102:8036-8041.
Lou, G., K. Palikaras, S. Lautrup, M. Scheibye-Knudsen, N. Tavernarakis, and E.F. Fang. 2020. Mitophagy and neuroprotection. Trends In Molecular Medicine. 26:8-20.
MacDonald, M.E., C.M. Ambrose, M.P. Duyao, R.H. Myers, C. Lin, L. Srinidhi, G. Barnes, S.A. Taylor, M. James, and N. Groot. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 72:971-983.
Mehrtash, A.B., and M. Hochstrasser. 2019. Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. In Seminars In Cell & Developmental biology. Vol. 93. Elsevier. 111-124.
Nasir, J., S.B. Floresco, J.R. O'Kusky, V.M. Diewert, J.M. Richman, J. Zeisler, A. Borowski, J.D. Marth, A.G. Phillips, and M.R. Hayden. 1995. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell. 81:811-823.
O'Kusky, J.R., J. Nasir, F. Cicchetti, A. Parent, and M.R. Hayden. 1999. Neuronal degeneration in the basal ganglia and loss of pallido-subthalamic synapses in mice with targeted disruption of the Huntington's disease gene. Brain Research. 818:468-479.
Orr, A.L., S. Li, C.-E. Wang, H. Li, J. Wang, J. Rong, X. Xu, P.G. Mastroberardino, J.T. Greenamyre, and X.-J. Li. 2008. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. Journal of Neuroscience. 28:2783-2792.
Pal, A., F. Severin, B. Lommer, A. Shevchenko, and M. Zerial. 2006. Huntingtin–HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease. The Journal of Cell Biology. 172:605-618.
Peters, M.F., and C.A. Ross. 2001. Isolation of a 40-kDa Huntingtin-associated protein. Journal of Biological Chemistry. 276:3188-3194.
Phu, L., C.M. Rose, J.S. Tea, C.E. Wall, E. Verschueren, T.K. Cheung, D.S. Kirkpatrick, and B. Bingol. 2020. Dynamic regulation of mitochondrial import by the ubiquitin system. Molecular Cell. 77:1107-1123. e1110.
Ravanelli, S., F. den Brave, and T. Hoppe. 2020. Mitochondrial quality control governed by ubiquitin. Frontiers In Cell And Developmental Biology. 8:270.
Ray, P.D., B.-W. Huang, and Y. Tsuji. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling. 24:981-990.
Reddy, P.H., and U.P. Shirendeb. 2012. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 1822:101-110.
Reiner, A., I. Dragatsis, S. Zeitlin, and D. Goldowitz. 2003. Wild-type huntingtin plays a role in brain development and neuronal survival. Molecular Neurobiology. 28:259-275.
Ruan, L., C. Zhou, E. Jin, A. Kucharavy, Y. Zhang, Z. Wen, L. Florens, and R. Li. 2017. Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature. 543:443-446.
Scherz-Shouval, R., and Z. Elazar. 2011. Regulation of autophagy by ROS: physiology and pathology. Trends In Biochemical Sciences. 36:30-38.
Scherz‐Shouval, R., E. Shvets, E. Fass, H. Shorer, L. Gil, and Z. Elazar. 2007. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. The EMBO Journal. 26:1749-1760.
Seo, H., K.-C. Sonntag, W. Kim, E. Cattaneo, and O. Isacson. 2007. Proteasome activator enhances survival of Huntington's disease neuronal model cells. PloS One. 2:e238.
Sharp, A.H., and C.A. Ross. 1996. Neurobiology of Huntington's disease. Neurobiol Dis. 3:3-15.
Sherman, M.Y., and A.L. Goldberg. 2001. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron. 29:15-32.
Shirendeb, U., A.P. Reddy, M. Manczak, M.J. Calkins, P. Mao, D.A. Tagle, and P. Hemachandra Reddy. 2011. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Human Molecular Genetics. 20:1438-1455.
Soares, T.R., S.D. Reis, B.R. Pinho, M.R. Duchen, and J.M. Oliveira. 2019. Targeting the proteostasis network in Huntington’s disease. Ageing Research Reviews. 49:92-103.
Song, J., J.M. Herrmann, and T. Becker. 2021. Quality control of the mitochondrial proteome. Nature Reviews Molecular Cell Biology. 22:54-70.
Valencia, A., E. Sapp, J.S. Kimm, H. McClory, K.A. Ansong, G. Yohrling, S. Kwak, K.B. Kegel, K.M. Green, and S.A. Shaffer. 2013. Striatal synaptosomes from Hdh 140Q/140Q knock-in mice have altered protein levels, novel sites of methionine oxidation, and excess glutamate release after stimulation. Journal of Huntington's Disease. 2:459-475.
Waelter, S., A. Boeddrich, R. Lurz, E. Scherzinger, G. Lueder, H. Lehrach, and E.E. Wanker. 2001. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Molecular Biology of The Cell. 12:1393-1407.
Yablonska, S., V. Ganesan, L.M. Ferrando, J. Kim, A. Pyzel, O.V. Baranova, N.K. Khattar, T.M. Larkin, S.V. Baranov, and N. Chen. 2019. Mutant huntingtin disrupts mitochondrial proteostasis by interacting with TIM23. Proceedings of the National Academy of Sciences. 116:16593-16602.
Yano, H., S.V. Baranov, O.V. Baranova, J. Kim, Y. Pan, S. Yablonska, D.L. Carlisle, R.J. Ferrante, A.H. Kim, and R.M. Friedlander. 2014. Inhibition of mitochondrial protein import by mutant huntingtin. Nature Neuroscience. 17:822-831.
黃紫婷. 2015. 探討 ZNRF1, UCHL1, Oleuropein 對泛素-蛋白酶體及粒線體功能的影響. 成功大學生命科學系學位論文:1-78.