| 研究生: |
陳煥文 Chen, Huan-Wen, |
|---|---|
| 論文名稱: |
研究microRNA生成機制對大腸癌抗藥性之影響 Study of MicroRNA Processing Machinery on Drug-resistant Colon Cancer |
| 指導教授: |
賴明德
Lai, Ming-Derg |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | DROSHA 、MAF1 、大腸癌 、抗藥性 、微RNA |
| 外文關鍵詞: | DROSHA, MAF1, colon cancer, drug resistance, micro RNA |
| 相關次數: | 點閱:50 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大腸癌是診斷比率第三高的癌症,其晚期病人五年存活率極差。目前大腸癌第一線治療方為手術和化療。然而大腸癌容易因為抗藥性,使治療效果受限,而其抗藥機制仍未清楚。miRNA修飾因子(miRNAs processing factors)可能在抗藥機制中扮演重要角色。miRNA修飾因子使miRNA成熟並具有功能性,而其失調(如DROSHA)也與許多癌症不良預後相關。DROSHA的調節會受到其他蛋白質交互作用的影響,RNA聚合酶III(RNAP III)的阻遏蛋白MAF1,可能會提供我們一些線索。在這項研究中,我們發現了下調DROSHA會使HCT-116大腸癌細胞株生長受到抑制,並對化療藥物降低敏感性。而在抗奧沙利鉑(oxaliplatin)的HCT-116細胞中也發現內源性DROSHA的表達量下降,且受到化療藥物刺激下,DROSHA表達量比起一般HCT-116更快速地降低。而在下調MAF1的HCT-116細胞中觀察到DROSHA會高表現的特性,並且通過免疫沉澱法及共聚焦顯微鏡觀察了DROSHA及MAF1其潛在的交互作用。最後利用NGS分析了下游miRNA群體的變異。綜上所述,在大腸癌中DROSHA的失調對抗藥性有重要影響,而MAF1可能是其調節因子之一。最後也提供了一些功能尚未明確的miRNAs作為研究大腸癌抗藥性的潛在標的。
Colon cancer is the third most commonly diagnosed cancer with poor 5-year survival rate of patients in an advanced stage. The main treatment option of colon cancer are surgery and chemotherapy. However, the therapeutic efficacy with colon cancer is limited by drug resistance and the mechanism of resistance remains largely unclear. We proposed that micro RNAs (miRNAs) processing factors, which carry out the maturation of miRNAs, might play an important role in drug resistance. Dysregulation of these miRNA processing factors, such as DROSHA, may correlate to worse clinical outcomes. The regulation of DROSHA could be conducted by the interacting proteins. MAF1, the repressor of RNA polymerase III (RNAP III), may also give a clue to understanding drug resistance. In this study, we demonstrated the proliferation inhibition and chemo-drug insensitivity in DROSHA-downregulated HCT-116 colon cancer cells. Lower endogenous DROSHA expression was found in oxaliplatin-resistant HCT-116 cells. In addition, DROSHA expression was reduced during drug treatment. DROSHA upregulation were observed in the MAF1-downregulated colon cancer cells, and the potential DROSHA/MAF1 interaction were examined by immunoprecipitation and confocal microscopy. The effects of DROSHA and MAF1 on miRNAs were also analyzed by NGS. In conclusion, the dysregulation of DROSHA plays an important role in drug resistance. MAF1 might be a regulator of DROSHA in colon cancer cells and contributes to drug resistance. Finally, we identified certain un-explored miRNAs which may function potential therapy targets for drug resistance in colon cancer.
1.Thomas J. MicroRNAs: Clinical Relevance in Colorectal Cancer. Int J Mol Sci. 2015 Nov 25; 16(12):28063-76.
2.Brian M. Systemic Treatment of Colorectal Cancer. Gastroenterology. 2008 May; 134(5):1296-310.
3.Brenner H. Colorectal cancer. Lancet. 2014 Apr 26; 383(9927):1490-1502.
4.Hsu HH. Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol. 2018 Jul; 233(7):5458-5467.
5.Longley DB. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003 May; 3(5):330-8.
6.T. Alcindor. Oxaliplatin: a review in the era of molecularly targeted therapy. Curr Oncol. 2011 Feb; 18(1): 18–25.
7.Hu T. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol. 2016 Aug 14;22(30):6876-89.
8.Reed JC. Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol. 1995 Nov; 7(6):541-6.
9.Wahid F. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 2010 Nov; 1803(11):1231-43.
10.Wu WK. MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis. 2011 Mar; 32(3):247-53.
11.Allen, K.E. Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol. Cancer Ther. 2010 Dec; 9(12):3126-36.
12.Totary-Jain H. Reprogramming of the microRNA transcriptome mediates resistance to rapamycin. J Biol Chem. 2013 Mar 1; 288(9):6034-44.
13.Rasmussen MH. High expression of microRNA-625-3p is associated with poor response to first-line oxaliplatin based treatment of metastatic colorectal cancer. Mol Oncol. 2013 Jun; 7(3):637-46.
14.Zhang Y. MicroRNA-587 antagonizes 5-FU-induced apoptosis and confers drug resistance by regulating PPP2R1B expression in colorectal cancer. Cell Death Dis. 2015 Aug 6; 6: e1845.
15.Shen J. Signaling-mediated regulation of MicroRNA processing. Cancer Res. 2015 Mar 1; 75(5): 783-91.
16.Han Y. Inducing cell proliferation inhibition and apoptosis via silencing Dicer, Drosha, and Exportin 5 in urothelial carcinoma of the bladder. J Surg Oncol. 2013 Feb;107(2): 201-5.
17.Merritt WM. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med. 2008 Dec 18; 359(25):2641-50.
18.Grelier G. Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer. 2009 Aug 18; 101(4):673-83.
19.Karube Y. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005 Feb; 96(2):111-5.
20.Cawley K. Disruption of microRNA biogenesis confers resistance to ER stress-induced cell death upstream of the mitochondrion. PLoS One. 2013 Aug 19; 8(8): e73870.
21.Ye P. An mTORC1-Mdm2-Drosha axis for miRNA biogenesis in response to glucose- and nutrient-deprivation. Mol Cell. 2015 Feb 19;57(4):708-720.
22.Suzuki HI. Modulation of microRNA processing by p53. Nature. 2009 Jul 23; 460(7254):529-33.
23.Fletcher CE. A novel role for GSK3β as a modulator of Drosha microprocessor activity and MicroRNA biogenesis. Nucleic Acids Res. 2016 Oct 23.
24.Matthew T. Blahna. Smad-mediate deregulation of microRNA biosynthesis. FEBS Lett. 2012 July 4; 586(14): 1906–1912.
25.Kawai S. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J Cell Biol. 2012 Apr 16;197(2):201-8.
26.Borchert GM. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006 Dec;13(12):1097-101.
27.Koo CX. RNA polymerase III regulates cytosolic RNA:DNA hybrids and intracellular microRNA expression. J Biol Chem. 2015 Mar 20;290(12):7463-73.
28.White RJ. RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol. 2005 Jan; 6(1):69-78.
29.Upadhya R. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol Cell. 2002 Dec;10(6):1489-94.
30.Vannini A. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell. 2010 Oct 1;143(1):59-70.
31.Desai N. Two steps in Maf1-dependent repression of transcription by RNA polymerase III. J Biol Chem. 2005 Feb 25;280(8):6455-62.
32.Khanna A. Emerging Roles for Maf1 beyond the Regulation of RNA Polymerase III Activity. J Mol Biol. 2015 Aug 14;427(16):2577-85.
33.Sandra S. Johnson. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases. Mol Cell. 2007 May 11;26(3):367-79.
34.Anthony M. Bolger. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014 Aug 1; 30(15): 2114–2120.
35.Marc R. Friedländer. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012 Jan; 40(1): 37–52.
36.Aguirre-Gamboa R. SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS One. 2013 Sep 16; 8(9):e74250.
37.Rhodes DR. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004 Jan-Feb;6(1):1-6.
38.Schuierer S. Large-scale benchmark of Endeavour using MetaCore maps. Bioinformatics. 2010 Aug 1;26(15):1922-3.
39.Gao J. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013 Apr 2;6(269):pl1.
40.Chen LG, Upregulation of miR-101 enhances the cytotoxic effect of anticancer drugs through inhibition of colon cancer cell proliferation. Oncol Rep. 2017 Jul;38(1):100-108.
41.Rapti SM. miR-34a overexpression predicts poor prognostic outcome in colorectal adenocarcinoma, independently of clinicopathological factors with established prognostic value. Clin Biochem. 2017 Nov; 50(16-17):918-924.
42.Ren D. Maintenance of cancer stemness by miR-196b-5p contributes to chemoresistance of colorectal cancer cells via activating STAT3 signaling pathway. Oncotarget. 2017 Jul 25;8(30):49807-49823.
43.Rasmussen MH. High expression of microRNA-625-3p is associated with poor response to first-line oxaliplatin based treatment of metastatic colorectal cancer. Mol Oncol. 2013 Jun; 7(3):637-46.
44.Dong-Xu W. MicroRNA-185 is a novel tumor suppressor by negatively modulating the Wnt/β-catenin pathway in human colorectal cancer. Indian J Cancer. 2015 Dec; 52 Suppl 3: E182-5.
45.Zhang YF. miR-410-3p suppresses breast cancer progression by targeting Snail. Oncol Rep. 2016 Jul;36(1):480-6.
46.Guo R. MicroRNA-410 functions as a tumor suppressor by targeting angiotensin II type 1 receptor in pancreatic cancer. IUBMB Life. 2015 Jan;67(1):42-53.
47.Chen R. MicroRNA-410 regulates autophagy-related gene ATG16L1 expression and enhances chemosensitivity via autophagy inhibition in osteosarcoma. Mol Med Rep. 2017 Mar;15(3):1326-1334.
48.Kedziora KM. Fluorescence resonance energy transfer microscopy (FRET). Methods Mol Biol. 2015; 1251:67-82.
49.Shirafkan N. MicroRNAs as novel biomarkers for colorectal cancer: New outlooks. Biomed Pharmacother. 2018 Jan; 97:1319-1330.
50.Lee D. Emerging roles of DROSHA beyond primary microRNA processing. RNA Biol. 2018 Feb 1; 15(2):186-193.
51.Burger K. Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nat Rev Mol Cell Biol. 2015; 16(7): 417–30.
52.Kim B. Genome-wide mapping of DROSHA cleavage sites on primary MicroRNAs and noncanonical substrates. Mol Cell. 2017; 66(2): 258–269 e5.
53.Wagschal A. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell. 2012; 150 (6):1147–57.
54.Gromak N. Drosha regulates gene expression independently of RNA cleavage function. Cell Rep. 2013; 5(6):1499–510.
55.Lee D. DROSHA targets its own transcript to modulate alternative splicing. RNA. 2017 Jul;23(7):1035-1047.
56.Dai L. Cytoplasmic Drosha activity generated by alternative splicing. Nucleic Acids Res. 2016 Dec 1;44(21):10454-10466.
57.Knuckles P. Drosha regulates neurogenesis by controlling neurogenin 2 expression independent of microRNAs. Nat Neurosci. 2012; 15(7): 962–9.
58.Rolando C. Multipotency of adult hippocampal NSCs in vivo is restricted by Drosha/NFIB. Cell Stem Cell. 2016; 19(5): 653–662.
59.Kim YK. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci USA. 2016; 113(13): E1881–9.
60.Bonhoure N. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance. Genes Dev. 2015 May 1; 29(9):934-47.
61.Turowski TW. Transcription by RNA polymerase III: insights into mechanism and regulation. Biochem Soc Trans. 2016 Oct 15;44(5):1367-1375.
62.Pépin G. Regulation of human Dicer by the resident ER membrane protein CLIMP-63. Nucleic Acids Res. 2012 Dec;40(22):11603-17.
63.Torrezan GT. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat Commun. 2014 Jun 9; 5: 4039.
64.Hata A. Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci Signal. 2015 Mar 17;8(368):re3.
65.Herbert KM. Phosphorylation of DGCR8 increases its intracellular stability and induces a progrowth miRNA profile. Cell Rep. 2013 Nov 27; 5(4):1070-81.
66.Kantidakis T. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc Natl Acad Sci U S A. 2010 Jun 29; 107(26):11823-8.
67.Rollins J. Human Maf1 negatively regulates RNA Polymerase III transcription via the TFIIB family members Brf1 and Brf2. Int J Biol Sci. 2007 May 1; 3(5):292-302.
68.Tang X. Glycogen synthase kinase 3 beta (GSK3β) phosphorylates the RNAase III enzyme Drosha at S300 and S302. PLoS One. 2011; 6(6): e20391.
校內:2023-07-01公開