| 研究生: |
周澤亨 Chou, Tse-Heng |
|---|---|
| 論文名稱: |
新穎氮碳化矽紫外光感測器及低成本低溫多晶矽氫氣感測器之研究 Studies of Novel SiCN Ultraviolet Light Detectors and LTPS Mass Application Hydrogen Sensors |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 感測器 、氫氣 、低溫多晶矽 、紫外光 、氮碳化矽 |
| 外文關鍵詞: | Hydrogen, Sensor, LTPS, Ultraviolet (UV), SiCN |
| 相關次數: | 點閱:112 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究新穎氮碳化矽(SiCN)紫外光感測器及低成本低溫多晶矽(low temperature polysilicon, LTPS)氫氣感測器。氮碳化矽三元化合物是一種較新穎高能隙材料(3.2 ~ 4.4 eV),其對應光波長為紫外光(ultraviolet, UV),因此利用氮碳化矽薄膜來作為紫外光感測器(detector)。一般紫外光感測常用高能隙材料有GaN,β-SiC on Si,4H-SiC,diamond以及6H-SiC等。與這些常用材料相比,氮碳化矽較便宜且較易直接成長於矽晶上因此較適合低成本高性能紫外光感測器。本論文係利用快速昇溫化學氣相沉積(RTCVD)系統,以C3H8氣體作為碳(C)原子的來源,成長氮碳化矽薄膜並利用FESEM,XRD,TEM,AFM, PL,PR,HP4145B(I/V),254 nm UV light source等儀器來分析氮碳化矽薄膜結晶性與光電特性。在矽單晶基板上分別為研製四種不同結構氮碳化矽高溫紫外光偵測器元件即是(1) n-SiCN/p-PS/p-Si (2) n-SiCN/p-SiCN (3) n-SiCN/i-SiCN/p-SiCN and (4) n-SiCN/i-SiCN/p-Si 。
另一方面,吾人利用電化學陽極蝕刻法(electrochemical anodization method)於p(100)單晶矽基板表面蝕刻出多孔矽(porous silicon, PS)層,此多孔矽層具有高電阻特性,可用來抑制紫外光(ultraviolet)偵測元件在高溫環境時所增加的暗電流,且此多孔矽層亦能增加光偵測元件對紫外線的吸光面積,提升光電效率。另外,多孔矽層海綿(sponge-like)的結構有助於在其表面上之磊晶(epitaxy)薄膜的成核與成長。除此之外,多孔矽層高電阻特性亦可作為半絕緣基板(semi-insulating substrate)。因此吾人也利用多孔矽層來研製高性能n-SiCN/p-PS/p-Si異質接面高溫紫外光感測器元件。
此外,由於能源危機及環境污染,許多替代性的能源蓬勃發展。其中氫氣因為是乾淨能源故被列為當今最具吸引力以及取代石油的最終替代能源的優先選項。另一方面,隨著科技的發達,氫氣在化學製程,化工製程,半導體工業與醫療業上亦為十分重要之原料與產物。然而氫氣是一種具有可燃性及爆炸性的氣體,當氫氣體積濃度介於4.65% ~ 93.9%間即會產生爆炸。所以,基於環保及工安兩方面的考量,發展可以迅速偵測並嚴密監控外洩氫氣濃度之氫氣感測器是有其重要性。本論文報導利用準分子雷射退火(excimer laser annealing, ELA)技術在玻璃基板成長的低溫多晶矽薄膜上研製低成本高性能金屬/半導體(MS)蕭特基二極體式氫氣感測器。利用鈀閘極吸附氫氣後,臨限電壓與兩端電容值的改變,作為檢測氫氣的依據。其運用原理是採用鈀金屬對氫氣具有良好的觸媒(catalytic)活性,在含有氫氣的環境中,能將吸附於表面的氫分子(molecule)解離(dissociation)為氫原子(atom),而部分的氫原子將會擴散穿過鈀金屬並吸附(adsorption)於金屬與氧化層界面,這些氫原子經極化後,會改變界面的電場,造成氧化層與矽半導體界面的蕭特基能障高度改變(Schottky barrier height variation),因此改變了元件的電性。然而,矽的費米能階容易產生表面態位釘住效應(Fermi level pinning),使蕭特基能障高度較不受極化氫原子的影響,所以對氫氣之靈敏度也較差。因此吾人並用二氧化鈦(TiO2)材料來增加能障高度變化(barrier height variation)以改善MOS Schottky diode對氫氣吸附能力,進而提升偵測的靈敏度。
In this dissertation, we report the investigations of novel SiCN ultraviolet light detectors and LTPS (low temperature polysilicon) low cost hydrogen sensors. Four type structures including n-SiCN/p-PS/p-Si heterojunction, n-SiCN/p-SiCN homojunction, and n-SiCN/i-SiCN/p-SiCN and n-SiCN/i-SiCN/p-Si junctions, have been developed.
Firstly, we study the n-SiCN/p-silicon heterojunction with porous silicon (PS) buffer layer for low cost and high temperature ultraviolet (UV) detecting applications. The PS layer and the cubic crystalline n-SiCN film were formed on the top of p-(100) silicon substrate by the electrochemical anodization and rapid thermal chemical vapor deposition (RTCVD) sequentially. The PS layer has a high resistivity to suppress the dark current, and provides sponge-like structure to limit strain and cracks development after the post growth cooling, thus favoring nucleation to result a better single crystal SiCN film. Consequently, the developed optical sensing device has a high room temperature (25 °C) photo/dark current ratio (PDCR) 85.4 with and without irradiation of and 254 nm UV light with 0.5 mW/cm2 optical power. Even though at 200 °C the ratio is still equal to 7.42. These results are better than the reported ZnO on GaAs substrate or β-SiC on Si substrate UV detectors without porous treatment.
Next, a novel n-SiCN/p-SiCN homojunction was developed on Si substrate with RTCVD for low cost and high performance ultraviolet detecting applications. The current ratio of the junction under -5 V bias, with and without irradiation of 254 nm UV light are 1940, and 96.3 at room temperature, and 175 °C, respectively. Compared to the reported UV detectors with material of 4H-SiC or β-SiC, the developed n-SiCN/p-SiCN homojunction has better current ratio in both room and elevated temperature.
To raise the detector’s PDCR, both n-SiCN/i-SiCN/p-SiCN and n-SiCN/i-SiCN/p-Si junctions were developed. The measured PDCR of n-SiCN/i-SiCN/p-SiCN and the n-SiCN/i-SiCN/p-Si junctions with and without irradiation of 254 nm UV light under -5 V bias and 0.5 mW/cm2 are 150.26 and 5.42, respectively. Compared to the reported UV detectors with 4H-SiC or β-SiC (3C-SiC), the developed n-SiCN/i-SiCN/p-SiCN homojunction has the better current ratio in both room and high temperatures. Additionally, the Pd/n-LTPS (MS) and Pd/TiO2/n-LTPS (MOS) Schottky diodes fabricated on a glass substrate for hydrogen sensing are reported.
On the other hand, we also investigate the hydrogen detecting performance of Pd/n-LTPS/glass thin film Schottky diodes. The n-LTPS (n-type low temperature polysilicon) is an excimer laser annealed (ELA) and PH3 gas plasma treated amorphous silicon (a-Si) thin film. In addition, we used a TiO2 interface layer to improve hydrogen sensing ability significantly. At room temperature and -2 V bias, the developed MOS Schottky diode exhibited a high signal ratio of 1539.6% to 50 ppm of hydrogen gas, with a fast response time of 40 sec, respectively. The signal ratio is better or comparable with that of other reported MOS type hydrogen gas sensors prepared on Si or III-V compound substrate. Furthermore, the signal ratio is 7.6, 14, and 30 times over other interfering gases of C2H5OH, C2H4, and NH3 at room temperature and a concentration of 8000 ppm at -2 V bias, respectively. Thus, the developed MOS Schottky diode shows promise for the future development and commercialization of a low cost hydrogen sensor.
【References】
[1] M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. on Selected Topics in Quantum Electron., vol. 8, pp. 302-309, Mar./Apr. 2002.
[2] T. Toda, M. Hata, Y. Nomura, Y. Ueda, M. Sawada and M. Shono, “Operation at 700oC of 6H-SiC UV sensor fabricated using N+ implantation,” Jpn. J. Appl. Phys., vol. 43, no. 1A/B, pp. L27-L29, 2004.
[3] J. T. Torvik, J. I. Pankove, B. Van Zeghbroeck, “GaN/SiC heterojunction bipolar transistors,” Solid State Electron., vol. 44, pp. 1229-1233, 2000.
[4] S. F. Ting, Y. K. Fang, W. T. Hsieh, Y. S. Tsair, C. N. Chang, C. S. Lin, M. C. Hsieh, H. C. Chiang, and J. J. Ho, “A high breakdown-voltage SiCN/Si heterojunction diode for high-temperature applications,” IEEE Electron Device lett., vol. 23, no. 3, pp.142-144, Mar. 2002.
[5] L. Voss, S. J. Pearton, F. Ren, P. Bove, H. Lahreche and J. Thuret, “Electrical performance of GaN Schottky rectifiers on Si substrates,” J. Electrochem. Soc., vol. 153, pp. G681-G684, 2006.
[6] J. W. Johnson, E. L. Piner, A. Vescan, R. Therrien, P. Rajagopal, J. C. Roberts, J. D. Brown, S. Singhal, and K. J. Linthicum, “12 W/mm AlGaN-GaN HFETs on silicon substrates,” IEEE Electron Device lett., vol. 25, no. 7, pp. 459-461, July 2004.
[7] M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Trans. Electron Devices, vol. 40, no. 3, pp. 645-655, Mar. 1993.
[8] W. T. Hsieh, Y. K. Fang, K. H. Wu, W. J. Lee, J. J. Ho, and C. W. Ho, “Using porous silicon as semi-insulator substrates for β-SiC high temperature optical-sensing devices,” IEEE Trans. Electron Devices, vol. 48, no. 2, pp. 801-803, Feb. 2001.
[9] W. T. Hsieh, Y. K. Fang, W. J. Lee, C.W. Ho, K. H. Wu and J. J. Ho, “To suppress dark current of high temperature β-SiC/Si optoelectronics devices with porous silicon substrate,” Electron. Lett., vol. 36, no. 22, pp. 1869-1870, Oct. 2000.
[10] A. Balducci, M. Marinelli, E. Milani, M. E. Morgada, A. Tucciarone, G. Verona-Rinati, M. Angelone, and M. Pillon, “Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition,” Appl. Phys. Lett., vol. 86, pp. 193509-1-193509-3, 2005.
[11] S. Salvatori, F. Scotti, G. Conte, and M. C. Rossi, “Diamond-based UV photodetectors for high-temperature applications,” Electron. Lett., vol. 35, no. 20, pp. 1768-1770, Sep. 1999.
[12] A. Vescan, I. Daumiller, P. Gluche, W. Ebert, and E. Kohn, “Very high temperature operation of diamond Schottky diode,” IEEE Electron Devices Lett., vol. 18, no. 11, pp. 556-558, Nov. 1997.
[13] S. F. Ting, Y. K. Fang, W. T. Hsieh, Y. S. Tsair, C. N. Chang, C. S. Lin, M. C. Hsieh, H. C. Chiang, and J. J. Ho, “Cubic single-crystalline Si1-x-yCxNy films with mirror face prepared by RTCVD,” Electrochem. Solid-State Lett., vol. 4, pp. G91-G93, 2001.
[14] C. H. Hsieh, Y. S. Huang, P. F. Kuo, Y. F. Chen, L. C. Chen, J. J. Wu, K. H. Chen, and K. K. Tiong, “Piezoreflectance study of silicon carbon nitride nanorods,” Appl. Phys. Lett., vol. 76, no. 15, pp. 2044-2046, Apr. 2000.
[15] F. Link, H. Baumann, K. Bethge, H. Klewe-Nebenius, M. Burns, “C and N profiles of SiCN layers determined with nuclear reaction analyses and AES,” Nuclear Instruments and Methods in Physics Research B, vol. 139, pp. 268-272, 1998.
[16] J. J. Wu, K. H. Chen, C. Y. Wen, L. C. Chen, X. J. Guo, H. J. Lo, S. T. Lin, Y. C. Yu, C. W. Wang, E. K. Lin, “Effect of carbon sources on silicon carbon nitride films growth in an electron cyclotron resonance plasma chemical vapor deposition reactor,” Diamond and Related Materials, no. 9, pp. 556-561, 2000.
[17] Z. Gong, E. G. Wang, G. C. Xu, Y. Chen, “Influence of deposition condition and hydrigen on amorphous- to-polycrystalline SiCN films,” Thin Solid Films, vol. 348, pp. 114-121, 1999.
[18] J. J. Wu, C. T. Wu, Y. C. Liao, T. R. Lu, L. C. Chen, K. H. Chen, L. G. Hwa, C. T. Kuo, K, J. Ling, “Deposition of silicon carbon nitride films by ion beam sputtering,” Thin solid Films, vol. 355-356, pp. 417-422, 1999.
[19] D. M. Bhusari, C. K. Chen, K. H. Chen, T. J. Chuang, L. C. Chen, M. C. Lin, “Composition of SiCN crystals consisting of a predominantly carbon-nitride network,” Journal of Materials Research, vol. 12, no. 2, pp. 322-325, 1997.
[20] L. An, W. Zhang, V. M. Bright, M. L. Dunn, R. Raj, “Development of injectable polymer-derived ceramics for high temperature MEMS,” IEEE Micro Electro Mechanical Systems, MEMS 2000, The Thirteenth Annual International Conference, pp. 619-623, 23-27 Jan. 2000.
[21] K. H. Wu, Y. K. Fang, J. Y. fang and J. D. Hwang, “The growth and characterization of silicon/silicon carbide heteroepitaxial films on silicon substrates by rapid thermal chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 35, no. 7, pp. 3836-3840, July 1996.
[22] K. H. Wu, Y. K. Fang, J. H. Zhou and J. J. Ho, “β-SiC photodiodes prepared on silicon substrates by rapid thermal chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 36, no. 8, pp. 5151-5155, Aug. 1997.
[23] J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “In-line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sens. J., vol. 3, pp. 533-537, 2003.
[24] M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber bragg grating hydrogen sensors for all-temperature operation,” IEEE Photon. Technol. Lett., vol. 19, pp. 255-257, 2007.
[25] J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, K. W. Lin, H. I. Chen, and W. C. Liu, “Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes,” Sens. Actuators B, vol. 117, pp. 151-158, 2006.
[26] M. Z. Atashbar, D. Banerji, and S. Singamaneni, “Room temperature hydrogen sensor based on palladium nanowires,” IEEE Sensors J., vol. 5, no. 5, pp. 792-797, 2005.
[27] Y. Xu, C. Chen, X. Wang, Y. Lei, X. Wang, L. Chen, and Q. Wang, “The influence of relative content of Ti and Zr on the electrochemical behavior of laves phase alloy,” Int. J. Hydrogen Energy, vol. 32, pp. 1716-1720, 2007.
[28] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen- sensitive MOS field-effect transistor,” Appl. Phys. Lett., vol. 26, no. 2, pp. 55-57, Jan. 1975.
[29] K. Dobos, M. Armgarth, G. Zimmer, and I. Lundström, “The influence of different insulators on palladium-gate metal-insulator-semiconductor hydrogen sensors,” IEEE Trans. Electron Devices, vol. 31, no. 4, pp. 508-510, Apr. 1984.
[30] Y. K. Fang, S. B. Hwang, C. Y. Lin, and C. C. Lee, “ Trench Pd/Si metal oxide semiconductor Schottky barrier diode for a high sensitivity hydrogen sensor,” Appl. Phys. Lett., vol. 57, no. 25, pp. 2686-2688, Dec. 1990.
[31] P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si MIS schottky barrier diode hydrogen detector,” IEEE Trans. Electron Devices, vol. ED-28, no. 9, pp. 1003-1009, Sep. 1981.
[32] C. W. Hung, H. L. Lin, H. I. Chen, Y. Y. Tsai, P. H. Lai, S. I. Fu, and W. C. Liu, “A novel Pt/In0.52Al0.48As Schottky diode-type hydrogen sensor,” IEEE Electron Device Lett., vol. 27, no. 12, pp. 951-954, Dec. 2006.
[33] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd–Oxide–Al0:3Ga0:7As MOS hydrogen sensor,” IEEE Electron Device Lett., vol. 24, no. 6, pp. 390-392, Jun. 2003.
[34] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, W. C. Wang, and K. H. Yu, “Hydrogen sensitive characteristics of a novel Pd/InP metal oxide semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, no. 9, pp. 1938–1944, Sep. 2001.
[35] W. T. Hsieh, Y. K. Fang, W. J. Lee, K. H. Wu, J. J. Ho, K. H. Chen, and S. Y. Huang, “An a-SiGe:H Phototransistor Integrated with a Pd Film on Glass Substrate for Hydrogen Monitoring,” IEEE Trans. Electron Devices, vol. 47, no. 5, pp. 939–943, May. 2000.
[36] S. Schiffman, D. Wyrick, R. Gutierrezosuna, and H. Nagle, “Effectiveness of an electronic nose for monitoring bacterial and fungal growth,” Electronic Noses and Olfaction 2000, Institue of Physics Publishing, 2000.
[37] J. Grate, “Acoustic wave microsensor arrays for vapor sensing,” Chem. Rev., vol. 100, pp. 2627–2648, 2000.
[38] N. Lewis, “Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors,” Acc. Chem. Res., vol. 37, pp. 663–672, 2004.
[39] I. H. Song, S. H. Kang, W. J. Nam, and M. K. Han, “A high-performance multichannel dual-gate poly-Si TFT fabricated by excimer laser irradiation on a floating a-Si thin film,” IEEE Electron Device Lett., vol. 24, no. 9, pp. 580-582, Sep. 2003.
[40] C. H. Kim, I. H. Song, W. J. Nam, and M. K. Han, “A poly-Si TFT fabricated by excimer laser recrystallization on floating active structure,” IEEE Electron Device Lett., vol. 23, no. 6, pp. 315-317, Jun. 2002.
[41] W. K. Kwak, B. R. Cho, S. Y. Yoon, S. J. Park, and J. Jang, “A high performance thin-film transistor using a low temperature poly-Si by silicide mediated crystallization,” IEEE Electron Device Lett., vol. 21, no. 3, pp. 107-109, Mar. 2000.
[42] J. H. Lee, J. H. Kim, and M. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, pp. 897-899, Dec. 2005.
[43] J. H. Lee, W. Jin Nam, S. H. Jung, and M. K. Han, “A new current scaling pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 25, no. 5, pp. 280-282, May 2004.
[44] P. C. Chang, C. L. Yu, S. J. Chang, Y. C. Lin, and S. L. Wu, “Low-noise and high-detectivity GaN UV photodiodes with a low-temperature AlN cap layer,” IEEE Sensors J., vol. 7, no. 9, pp. 1289-1292, Sep. 2007.
[45] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, and H. Morkoc, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, “High speed low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures,” Appl. Phys. Lett., vol. 71, pp. 2154-2156, 1997.
[46] C. K. Wang, S. J. Chang, Y. K. Su, C. S. Chang, Y. Z. Chiou, C. H. Kuo, T. K. Lin, and T. K. Ko, J. J. Tang, “GaN MSM photodetectors with TiW transparent electrodes,” Materials Science & Engineering B, vol. 112, pp. 25-29, 2004.
[47] L. C. Chen, C. K. Chen, S. L. Wei, D. M. Bhusari, K. H. Chen, Y. F. Chen, Y. C. Jong, and Y. S. Huang, “Crystalline silicon carbon nitride: A wide band gap semiconductor,” Appl. Phys. Lett., vol. 72, pp. 2463-2465, 1998.
[48] K. H. Chen, J. J. Wu, C. Y. Wen, L. C. Chen, C. W. Fan, P. F. Kuo, Y. F. Chen, and Y. S. Huang, “Wide band gap silicon carbon nitride films deposited by electron cyclotron resonance plasma chemical vapor deposition,” Thin Solid Films, vol. 355-356, pp. 205-209, 1999.
[49] P. G. Neudeck, D. J. Larkin, J. E. Starr, J. A. Powell, C. S. Salupo, and L. G. Matus, “Electrical properties of epitaxial 3C- and 6H-SiC p-n junction diodes produced side-by-side on 6H-SiC substrates,” IEEE Trans. Electron Devices, vol. 41, no. 5, pp. 826-835, May 1994.
[50] P. R. C. Kent, G. L. E. Hart, and A. Zunger, “Biaxial strain-modified valence and conduction band offsets of zinc-blende GaN, GaP, GaAs, InP, and InAs and optical bowing of strained epitaxial InGaN alloys,” Appl. Phys. Lett., vol. 81, pp. 4377-4379, 2002.
[51] A. Matoussi, T. Boufaden, A. Missaoui, S. Guermazi, B. Bessal¨s, Y. Mlik , B. E. Jani, “Porous silicon as an intermediate buffer layer for GaN growth on (100) Si,” Microelectronics Journal, vol. 32, pp. 995-998, 2001.
[52] I. Berbezier, and A. Halimaoui, “A microstructual study of porous silicon,” J. Appl. Phys., vol. 74, pp. 5421-5425, Nov. 1993.
[53] Z. X. Cao, “Plasma enhanced deposition of silicon carbonitride thin films and property characterization,” Diamond Relat. Mater., vol. 11, pp. 16-21, 2002.
[54] Database, Maintained and Distributed by the International Centre for Diffraction Data (ICDD), Newtown Square, PA, (2002).
[55] T. H. Moon, M. C. Jeong, W. Lee, J. M. Myoung, “The fabrication and characterization of ZnO UV detector,” Appl. Sur. Science, vol. 240, pp. 280-285, 2005.
[56] W. R. Chang, Y. K. Fang, S. F. Ting, Y. S. Tsair, C. N. Chang, C. Y. Lin, and S. F. Chen, “The hetero-epitaxial SiCN/Si MSM photodetector for high-temperature deep-UV detecting applications,” IEEE Electron Devices Lett., vol. 24, no. 9, pp. 565-567, Sep. 2003.
[57] A. Takazawa, T. Tamura, and M. Yamada, “Porous β-SiC fabrication by electrochemical anodization,” Jpn. J. Appl. Phys., vol. 32, 3148-3149, 1993.
[58] S. J. Young, L. W. Ji, S. J. Chang, S. H. Liang, K. T. Lam, T. H. Fang, K. J. Chen, X. L. Du, Q. K. Xue, “ZnO-based MIS photodetectors,” Sens. Actuators A Phys., vol. 135, pp. 529-533, 2007.
[59] S. J. Chang, T. K. Ko, J. K. Sheu, S. C. Shei, W. C. Lai, Y. Z. Chiou, Y. C. Lin, C. S. Chang, W. S. Chen, C. F. Shen, “AlGaN ultraviolet metal semiconductor metal photodetectors grown on Si substrates,” Sens. Actuators A Phys., vol. 135, pp. 502-506, 2007.
[60] X. F. Liu, G. S. Sun, J. M. Li, J. Ning, M. C. Luo, L. Wang, W.S. Zhao, Y. P. Zeng, “Visible blind p+-π-n--n+ ultraviolet photodetectors based on 4H-SiC homoepilayers,” Microelectronics Journal, vol. 37, pp. 1396-1398, 2006.
[61] A. Sciuto, F. Roccaforte, S. Di Franco, V. Raineri, and G. Bonanno, “High responsivity 4H-SiC schottky UV photodiodes baseds on the pinch-off surface effect,” Appl. Phys. Lett., vol. 89, pp. 081111-1-081111-3, 2006.
[62] S. M. Sze, “Physics of Semiconductor Devices,” John Wiley & Sons, Inc., New York, 2nd, pp. 90, 1981.
[63] Y. K. Su, Y. Z. Chiou, C. S. Chang, S. J. Chang, Y. C. Lin, J. F. Chen, “4H-SiC metal semiconductor metal ultraviolet photodetectors with Ni/ITO electrodes,” Solid State Electron., vol. 46, pp. 2237-2240, 2002.
[64] S. F. Ting, Y. K. Fang, W. T. Hsieh, Y. S. Tsair, C. N. Chang, C. S. Lin, M. C. Hsieh, H. C. Chiang, and J. J. Ho, “Heteroepitaxial silicon carbide nitride films with different carbon source on silicon substrates prepared by rapid thermal chemical vapor deposition,” J. Electron. Mater., vol. 31, pp.1341-1-1341-6, 2002.
[65] C. C. Cheng, Y. Y. Tsai, K.W. Lin, H. I. Chen, W. H. Hsu, C. W. Hung, R. C. Liu, and W. C. Liu, “Pd-Oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor (HEMT)-based hydrogen sensor,” IEEE Sens. J., vol. 6, no. 2, pp. 287-292, Apr. 2006.
[66] Y.Y. Tsai, C. W. Hung, S. I. Fu, P. H. Lai, H. C. Chang, H. I. Chen, and W. C. Liu, “Comprehensive investigation of hydrogen-sensing properties of Pt/InAlP-based Schottky diodes,” Sens. Actuators B, vol. 124, pp. 535-541, 2007.
[67] V. I. Filippov, A. A. Vasiliev, W. Moritz, and J. Szeponik, “Room-temperature hydrogen sensitivity of a MIS-structure based on the Pt/LaF3 interface,” IEEE Sens. J., vol. 6, no. 5, pp. 1250-1255, Oct. 2006.
[68] V. M. Arakelyan, V. E. Galstyan, Kh. S. Martirosyan, G. E. Shahnazaryan, V. M. Aroutiounian, and P. G. Soukiassian, “Hydrogen sensitive gas sensor based on porous silicon/TiO2-X structure,” Physica E, vol. 38, pp. 219-221, 2007.
[69] L. Andronic, and A. Duta, “TiO2 thin films for dyes photodegradation,” Thin Solid Films, vol. 515, pp. 6294–6297, 2007.
[70] G. J. Li, and S. Kawi, “High surface area SnO2: a novel semiconductor oxide gas sensor,” Materials letters, vol. 34, pp. 99-102, 1998.
[71] E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z. L. Wang, “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts,” Appl. Phys. Lett., vol. 81, no. 10, pp. 1869-1871, 2002
[72] M. Eriksson, I. Lundström, and L. G. Ekedahl, “A model of the Temkin isotherm behavior for hydrogen adsorption at Pd-SiO2 interfaces,” J. Appl. Phys., vol. 82, no. 6, pp. 3143–3146, Sep. 1997.
[73] W. P. Kang, and Y. Gürbüz, “Comparison and analysis of Pd and Pt GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, no. 12, pp. 8175–8181, Jun. 1994.
[74] M. Johansson, I. Lundström, and L. G. Ekedahl, “Bridging the pressure gap for palladium metal insulator semiconductor hydrogen sensors in oxygen containing environments,” J. Appl. Phys., vol. 84, no. 1, pp. 44–51, Jul. 1998.
[75] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative hydrogen-sensing study of Pd/GaAs and Pd/InP metal-oxide-semiconductor Schottky diodes,” Jpn. J. Appl. Phys., vol. 40, pp. 6254-6259, Nov. 2001.
[76] W. C. Liu, K.W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, “A New Pt/Oxide/In0.49Ga0.51P MOS Schottky diode hydrogen sensor,” IEEE Electron. Device Lett., vol. 23, pp. 640-642, Nov. 2002.
[77] T. H. Tsai, J. R. Huang, K. W. Lin, W. C. Hsu, H. I. Chen, and W. C. Liu, “Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode,” Sens. Actuators B, vol. 129, pp. 292-302, 2008.
[78] II. Dokme, S. Altındal, I. M Afandiyeva, “The distribution of the barrier height in Al-TiW-Pd2Si/n-Si Schottky diodes from I-V-T measurements,” Semicond. Sci. Technol., vol. 23, pp. 035003-1-035003-6, 2008.
[79] L. L. Tongson, B. E. Knox, T. E. Sullivan, and S. J. Fonash, “Comparative study of chemical and polarization characteristics of Pd/Si and Pd/SiOX/Si Schottky barrier type devices,” J. Appl. Phys., vol. 50, pp. 1535-1537, 1979.
[80] S. J. Fonash, “Outline and comparison of the possible effects present in a metal thin film insulator semiconductor,” J. Appl. Phys., vol. 47, pp. 3597-3602, 1976.
[81] C. W. Hung, H. C. Chang, Y. Y. Tsai, P. H. Lai, S. I Fu, T. P. Chen, H. I. Chen, and W. C. Liu, “Study of a new field-effect resistive hydrogen sensor based on a Pd/Oxide/AlGaAs transistor,” IEEE Trans. Electron. Devices, vol. 52, pp. 1224-1231, May 2007.
[82] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diodes,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
[83] M. Eriksson, A. Salomonsson, I. Lundström, D. Briand, and A. E. Abom, “The influence of the insulator surface properties on the hydrogen response of field- effect sensors,” J. Appl. Phys., vol. 98, pp. 034903-1–034903-6, 2005.
[84] J. R. Huang, W. C. Hsu, H. I. Chen, and W. C. Liu, “Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres,” Sens. Actuators B, vol. 123, pp. 1040-1048, 2007.
[85] M. Ali, V. Cimalla, V. Lebedev, V. Tilak, P. M. Sandvik, D. W. Merfeld and O. Ambacher, “A study of hydrogen sensing performance of Pt-GaN schottky diodes,” IEEE Sensors J., vol. 6, no. 5, pp. 1115-1119, Oct. 2006.
[86] T. Sameshima, S. Usui, and M. Sekiya, “XeCl excimer laser annealing used in the fabrication of Poly-Si TFT’s,” IEEE Electron Device lett., vol. EDL-5, no. 5, pp. 276-278, May 1986.