簡易檢索 / 詳目顯示

研究生: 林逸倫
Lin, Yi-Lun
論文名稱: 基因遺傳演算法進行RCP疊合封裝體疲勞壽命之區間式最佳化分析
Interval Optimization of Fatigue Life for Redistributed Chip Package by Genetic Algorithm
指導教授: 陳榮盛
Chen, Rong-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 107
中文關鍵詞: 再分配晶片封裝技術基因遺傳演算法區間式最佳化設計
外文關鍵詞: Redistributed Chip Package, Genetic Algorithm, Interval Optimization
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於電子產品不斷地推陳出新,智慧型手機與手持平板更是朝著多功能整合的方向前進,因此晶片的封裝整合技術將是重要的課題。本文之RCP疊合封裝係將上層超薄型細間距球閘陣列封裝體經多佈線層技術與下層球閘陣列封裝體疊合而成,希冀透過最佳化模擬分析能提高封裝體之疲勞壽命。
    本文採用ANSYS12.0有限元素軟體針對RCP疊合封裝體進行模擬分析,首先針對模型施予低溫-40 到高溫125 的溫度循環負載,並導入Global/Local方法以提高模擬效率,其中錫球考慮為黏塑性材料,其他材料則視為線彈性,藉由Coffin-Manson與Morrow之能量觀點針對RCP疊合封裝體之關鍵錫球進行疲勞壽命預測。
    其次,以部分因子實驗法篩選出對關鍵錫球具有較大影響力之因子,並建立迴歸模型之反應曲面,然後透過基因遺傳演算法求得最佳設計參數 與反應值 。
    最後,設定合理允許目標誤差 ,利用區間式基因遺傳演算法進行各設計參數之區間範圍搜尋,同時可了解各設計參數對於關鍵錫球之平均應變能密度的敏感度。

    In recent years, the electronic products have been well developed. Among them, the smart cellphone and the handheld pad tend to be integrated with multi-function. Therefore, the packaging technology for chip becomes a critical issue in the future. In this paper, the RCP (Redistributed Chip Package) with PoP (Package on Package) consists of the upper very fine pitch ball grid array (VFBGA) and the lower stack package ball grid array (SPBGA). Furthermore, the upper and the lower layers are stacked by the multiple redistribution layers technology. Hence, this paper is expected to elevate the fatigue life of the package by an optimized analysis.

    First of all, ANSYS, the finite element software is adopted. The RCP with PoP model is subjected the thermal cycles of -40℃~125℃ through Global/Local method to improve the simulation efficiency. To predict the fatigue life of the critical solder ball made of viscoplastic material, the Coffin-Manson model and the Morrow’s energy-based model are applied. Apart from the solder ball, all the components are assumed to be elastic materials.

    Secondly, the factors with more significant effect to critical solder balls are selected as the design parameters by the fractional factorial design method and the response surface of regression model is developed. Then, the Genetic Algorithm is applied to obtain the optimal design parameter and optimal response.

    Finally, the allowable error range is provided properly and then the range parameter is determined by interval Genetic Algorithm. Meanwhile, the sensibility of each design parameter related to the average strain energy density for critical solder ball is recognized.

    中文摘要I AbstractII 致謝IV 符號表V 目錄VI 表目錄X 圖目錄XII 第一章 緒論1 1-1前言1 1-2研究動機與目的2 1-3文獻回顧2 1-4研究方法5 1-5章節提要6 第二章 理論基礎8 2-1亞蘭德本構模型8 2-1-1亞蘭德黏塑性本構模型8 2-1-2亞蘭德模型之材料參數10 2-2疲勞壽命預測14 2-3部份因子實驗設計法[22]16 2-4反應曲面法18 2-4-1 建構迴歸模型 19 2-4-2 實驗水準配置 22 2-4-3 迴歸模型配適性23 2-4-4 變異分析25 2-4-5 殘差分析26 2-5基因遺傳演算法27 2-6區間式遺傳演算法[13]31 2-6-1 適應度函數31 2-6-2收斂求解分析33 第三章 RCP模型評估42 3-1 RCP疊合封裝體介紹42 3-1-1 RCP疊合封裝之製程42 3-1-2 RCP疊合封裝體模型之結構43 3-2 RCP疊合封裝體模型之模擬44 3-2-1 RCP疊合封裝體之基本假設44 3-2-2 RCP疊合封裝體之邊界條件45 3-2-3RCP疊合封裝體之溫度負載45 3-3 關鍵錫球46 3-3-1關鍵錫球位置46 3-3-2全域/局部模型47 第四章 部份因子實驗法與反應曲面設計分析 61 4-1部份因子設計61 4-1-1 實驗配置62 4-1-2 變異分析62 4-2反應曲面分析62 4-2-1 迴歸模型63 4-2-2 變異分析與殘差分析63 4-2-3 因子間交互作用效應65 第五章 區間式最佳化設計86 5-1 基因遺傳演算法之最佳化參數與反應值86 5-1-1 最佳化參數與反應值86 5-1-2 疲勞壽命之探討87 5-2 區間式基因遺傳演算法87 5-2-1 設計參數之區間88 5-2-2 區間範圍收斂分析88 5-2-3 區間式最佳化設計之結果與討論89 第六章 結論與未來展望100 6-1 結論101 6-2 未來展望103 參考文獻104

    [1]Chhabra, N., "Freescales Redistributed Chip Packaging (RCP) Ready for Production", Freescale Semiconductor, 2010
    [2]Keser, B., Amrine, C., Trung, D., Fay, O., Hayes, S., Leal, G., Lytle, W., Mitchell, D., and Wenzel, R., "The Redistributed Chip Package: A Breakthrough for Advanced Packaging", IEEE Electron. Compon. and Technol. Conf., pp. 286–291, 2007
    [3]Ramanathan, L. N., Keser, B., Amrine, C., Duong, T., Hayes, S., Leal, G., Mangrum, M., Mitchell, D., and Wenzel, R., "Implementation of a Mobile Phone Module with Redistributed Chip Packaging", IEEE Electron. Compon. and Technol. Conf., pp. 1117–1120, 2008
    [4]Trotta, S., Wintermantel, M., Dixon, J., Moeller, U., Jammers, R., Hauck, T., Samulak, A., Dehlink, B., Kuo, S.M., Hao, L., Ghazinour, A., Yi, Y., Pacheco, S., Reuter, R., Majied, S., Moline, D., Aaron, T., Trivedi, V. P., Morgan,D. J., and John, J., "An RCP Packaged Transceiver Chipset for Automotive LRR and SRR Systems in SiGe BiCMOS Technology", IEEE Transactions On Microwave Theory And Techniques, VOL. 60, NO. 3, pp.778-793, 2012
    [5]Darveaux, R., "Solder Joint Fatigue Life Model", Proceedings of TMS Annual Meeting, pp.231-218, 1997
    [6]Darveaux, R., "Effect of Simulation Methodology on Solder Joint Crack Growth Correlation", Journal of Electronic Packaging, Vol. 124, pp.147-154, 2000
    [7]Cheng, Z.N., Wang, G. Z., Chen, L., Wilde, J., and Becker, K., "Viscoplastic Anand Model for Solder Alloys and Its Application", Soldering & Surface Mount Technology, pp. 31-36, 2000
    [8]Che, F.X., and Pang, J.H.L., "Thermal Fatigue Reliability Analysis for PBGA with Sn-3.8Ag-0.7Cu Solder Joints", Proceedings of 6th Electronics Packaging Technology Conference, pp.787-792, 2004
    [9]Stoyanov, S., Bailey, C. and Desmulliez, M., "Optimisation modeling for thermal fatigue reliability of lead-free interconnects in flip-chip packaging", Soldering & Surafce Mount Technology, Vol. 21, No.1, pp. 11-24, 2009
    [10]方子睿, "以反應曲面法搭配基因演算法進行堆疊晶QFN構裝體疲勞壽命之最佳化設計",國立成功大學工程科學系碩士畢業論文,2009
    [11]林家民, "以田口方法進行RCP疊合封裝體疲勞壽命之最佳化設計",國立成功大學工程科學系碩士畢業論文,2012
    [12]Bagley, J.D., "The Behavior of Adaptive Systems Which Employ Genetic and Correlative Algorithms", PhD thesis, University of Michigan, Ann Arbor, 1967
    [13]Shiau, T.N., Kang, C.H. and Liu, D.S., "Interval optimization of rotor-bearing systems with dynamic behavior constraints using an interval genetic algorithm", Structural and Multidisciplinary Optimization, Vol.36(6) ,pp 623-631, 2008
    [14]羅盛沐, "以區間式遺傳演算法進行堆疊晶QFN構裝體疲勞疲勞壽命之區間最佳化設計" ,國立成功大學工程科學系碩士畢業論文,2009
    [15]潘嘉偉, "探討關鍵錫球所累積平均應變能密度之反應曲面於FCOB覆晶式載板接合封裝體之差異分析",國立成功大學工程科學系碩士畢業論文, 2011
    [16]黃奎元, "基因遺傳演算法進行覆晶載板接合封裝疲勞壽命之區間最佳化分析",國立成功大學工程科學系碩士畢業論文, 2012
    [17]Bhate, D., Chan, D., Subbarayan, G., Chiu, T.C., Gupta, V., and Ewards, D. R., "Constitutive Behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu Alloys at Creep and Low Strain Rate Regimes", IEEE Transactions on Components and Packaging Technologiesm, Vol. 31, No. 3, 2008
    [18]L.F. Coffin, Jr., ASME Trans. 76, 931, 1954
    [19]Manson, S.S., Exp. Mech 5, 193, 1965
    [20]Morrow, J.D., ASTM STP 378, p. 45, ASTM, Philadelphia , 1964
    [21]Pang, J.H.L., Xiong, B.S. and Low, T.H., "Creep and Fatigue Characterization of Lead Free 95.5Sn-3.8Ag-0.7Cu Solder", 54th Electron. Compon. and Technol. Conf, June 1-4, Las Vegas, pp.1333-1337, 2004
    [22]葉怡成, "實驗計畫法─製程與產品最佳化", 五南圖書有限公司, 2001
    [23]Lewis, R.M., "Pattern Search Methods for Linearly Constrained Minimization", Society for Industrial and Applied Mathematics Journal Vol. 10, NO. 3, pp917-941, 2000
    [24]Kung, C., Chen, R.S., Lin, H.C., and Win, T.K., "Optimization of UBM for WLCSP Fatigue Reliability", Proceedings of International Microelectronic and Package Conference, pp.221-231, 2005

    下載圖示 校內:2015-07-24公開
    校外:2018-07-24公開
    QR CODE