簡易檢索 / 詳目顯示

研究生: 張凱鈞
Chang, Kai-Chun
論文名稱: 鐵金屬鍵結硫磷配位錯合物的反應活性探討
Reactivity of Iron Complexes binding with a Tris(thiolato)phosphine Ligand
指導教授: 許鏵芬
Hsu, Hua-Fen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 82
中文關鍵詞: 甲氧基鐵硫錯合物二氯甲烷活化碳氫鍵活化氫氣釋放
外文關鍵詞: methoxide, iron thiolate complex, activation of dichloromethane, C-H bond activation, hydrogen evolution
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們以單鐵為金屬中心與多牙配基PS3’’反應合成出[PPh4][FeIII(PS3”)(OCH3)] (1) and [PPh4][FeIII(PS3”)(Cl)] (2)的金屬錯合物。此結構已經藉由X-ray單晶繞射解出,為扭曲的雙三角錐結構,在軸位上鍵結甲氧基和氯離子。磁性研究顯示兩種錯合物都具有S=3/2的自旋態且有著C3對稱,鍵結在錯合物(1)的甲氧基不穩定,容易被乙腈分子取代形成[FeIII(PS3”)(CH3CN)]-,接著我們加入cobaltocene還原劑我們可以發現形成穩定的[FeII(PS3”)(CH3CN)]-錯合物。利用ferrocenium 氧化錯合物(2)可以得到鐵四價的錯合物[FeIV(PS3”)(Cl)]。此外我們發現鐵三價甲氧基具有很強的親和性能夠活化二氯甲烷的C-Cl鍵,而形成錯合物(2)。將錯合物一和其他具有親電性的物質芐基溴和芐基氯反應也被偵測到,此些反應是利用如紫外光-可見光-進紅外光光譜、電噴灑游離質譜、核磁共振光譜、氣相層析儀等多種方法進行分析與鑑定,在這邊顯示鐵三價與硫配位的錯合物具有親和性的反應性,於是我們可以利用此反應性和Nitrile hydratase酵素提出一個可能性的反應路徑。[PPh4][FeIII(PS3”)(OCH3)] (1) 可以和氧雜蒽(Xanthene)、芴(Fluorene)、9,10-二氫蒽(DHA)化合物反應進行碳氫鍵斷裂的催化反應,利用紫外光-可見光-進紅外光光譜進行分析與鑑定。當[PPh4][FeIII(PS3”)(OCH3)] (1)在有水的情況下時可與水反應產生氫氣,可以利用氣相層析儀進行分析與鑑定。

    Two mononuclear non-heme FeIII complexes supported by a tris(benzenethiolato)phosphine derivative, [FeIII(PS3”)(OCH3)]- (the anion of 1) and [FeIII(PS3”)(Cl)]- (the anion of 2) have been synthesized and characterized. The FeIII centers adopt trigonal-bipyramidal geometry with a methoxide or a chloride binding in the axial position. The bound methoxide in FeIII-OCH3 complex is labile and can be replaced by a CH3CN molecule. The forming FeIII-CH3CN species can be further reduced by cobaltocene quantitatively to a stable FeII-CH3CN complex, [Fe(PS3”)(CH3CN)]-, that was synthesized and characterized previously in our laboratory. The axial ligand, bound chloride, in 2 is relatively inert and stays ligated in donor solvents. One electron oxidation of [FeIII(PS3”)(Cl)]- (the anion of 2) by ferrocenium gave a FeIV analogue, [FeIV(PS3”)(Cl)]. Importantly, FeIII-OCH3 moiety in complex 1 acts as a strong nucleophile that activates the C-Cl bond in CH2Cl2, leading to the formation of FeIII-Cl complex (2) quantitatively. The nucleophilic reactions of complex 1 with other electrophiles, benzyl chloride and benzyl bromide were also evidenced. The chemistry shows that a FeIII bound base in a sulfur-rich ligation environment can have strong nucleophilicity and perform a nucleophilic reaction. While the pathway of nitrile hydratase has not been clearly determined, our example reported here provides a conjecture that the activation of nitrile could be through a nucleophilic attack of a FeIII bound hydroxide in the enzyme. In addition, complex 1 might undergo hydrogen atom abstraction in substract such as xanthene, flourene and DHA. More interestingly, the complex 1 in DMF reacts with H2O to evolve dihydrogen. Overall, the work demonstrates that a FeIII center binding with a tetradentae tris(thiolato)phosphine ligand provides a versatile reactivity in the axial site of trigonal bipyramidal geometry. The reactivity described at this work is summarized in the following scheme.

    Abstract I 中文摘要 II 誌謝 III List of Tables VII List of Figures VIII Abbreviations XIII Chapter 1. Introduction 1 1-1 Lipoxygenase 1 Biomimetic complexes for lipoxygenase 2 1-2Nitrile hydratases. 4 Biomimetic complexes 5 1-3 Hydrogen evolution by hydrogenase and synthetic metal complexes. 7 1-4 Motivation of this work 10 Chapter 2. Results and discussion 11 2-1 Synthesis and Characteristic of [PPh4][Fe(PS3’’)(OCH3)] (1) 11 Synthesis. 11 Elemental analysis. 12 The X-ray structure. 12 The UV-vis-NIR spectrum. 18 The ESI-MS spectrum 18 Isotopic experiment 20 Electrochemical study. 21 The 1H NMR spectrum 22 Magnetic studies. 24 2-2 Synthesis and Characterization of [PPh4][Fe(PS3’’)(Cl)] (2) 26 Synthesis 26 Elemental analysis. 26 The X-ray structure. 27 The UV-vis-NIR spectrum. 30 The ESI-MS spectrum. 31 Electrochemical study. 33 The 1H-NMR spectrum. 35 Magnetic studies. 36 2-3 Reactivity. 38 The replacement of bound methoxide in [PPh4][Fe(PS3’’)(OCH3)] (1) by acetonitrile 38 The nucleophilicity of bound methoxide in [PPh4][Fe(PS3’’)(OCH3)] (1) 40 The redox chemistry 50 C-H bond activation 52 Hydrogen evolution 54 Chapter 3 Conclusions 59 Chapter 4. Experiments and Instrument 61 4-1. General Procedures and Materials 61 4-2 Synthesis 63 [PPh4][FeII(PS3’’)(CH3CN)] 63 [PPh4][FeIII(PS3’’)(OCH3)] (1) 63 [PPh4][FeIII(PS3”)(Cl)] (2) 64 4-3 Reactivity 65 The replacement of bound methoxide in complex 1 by acetonitrile 65 The nucleophilicity of bound methoxide in [PPh4][Fe(PS3’’)(OCH3)] (1) 65 The redox chemistry 67 C-H bond activation 67 Hydrogen evolution 68 4-4 Instruments. 70 Elemental analysis. 70 Ultraviolet-visible spectroscopy. 70 Electrospray ionization mass spectrometry. 70 X-ray crystallographic data collection of the structures. 70 Nucleic magnetic resonance spectroscopy. 71 Magnetic measurement. 71 Cyclic Voltammetry. 71 GC Chromatograph. 71 High resolution Mass Spectrometer. 71 Reference 72 Appendix A 76

    (1) Niemoth-Anderson, J. D.; Clark, K. A. F.; George, T. A.; Charles R. Ross, I. Five coordinate Diamagnetic Iron(IV) Complexes with A Trigonal Planar Arrangement of Thiolate Ligand Atoms: Synthesis and Crystal Structure of [FeX(PS3)](X = Cl, Br, or I; PS3H3 = [P(C. J. Am. Chem. Soc. 2000, 122, 3977-3978.
    (2) Ogo, S.; Yamahara, R.; Roach, M.; Suenobu, T.; Aki, M.; Ogura, T.; Kitagawa, T.; Masuda, H.; Fukuzumi, S.; Watanabe, Y. Structural and Spectroscopic Features of a cis (Hydroxo)-FeIII-(Carboxylato) Configuration as an Active Site Model for Lipoxygenases. J. Am. Chem. Soc 2002, 41, 5513–5520.
    (3) Goldsmith, C. R.; Jonas, R. T.; Stack, T. D. P. C-H Bond Activation by a Ferric Methoxide Complex: Modeling the Rate-Determining Step in the Mechanism of Lipoxygenase. J. Am. Chem. Soc. 2002, 124, 83-96.
    (4) Goldsmith, C. R.; Jonas, R. T.; Stack, T. D. P. C−H Bond Activation by a Ferric Methoxide Complex:  Modeling the Rate-Determining Step in the Mechanism of Lipoxygenase. J. Am. Chem. Soc 2001, 124, 83-96.
    (5) Bryant, J. R.; Mayer, J. M. Oxidation of C−H Bonds by [(bpy)2(py)RuIVO]2+ Occurs by Hydrogen Atom Abstraction. J. Am. Chem. Soc 2003, 125, 10351.
    (6) Mei, F.; Ou, C.; Wu, G.; Cao, L.; Han, F.; Meng, X.; Li, J.; Li, D.; Liao, Z. Non-heme iron(II/III) complexes that model the reactivity of lipoxygenase with a redox switch. Dalton, Trans 2010, 39, 4267-4269.
    (7) Prasad, S.; Bhalla, T. C. Nitrile hydratases (NHases): At the interface of academia and industry. Biotechnol. Adv. 2010, 28, 725-741.
    (8) Mascharak, P. K. The Active Site of Nitrile Hydratase: An Assembly of Unusual Coordination Features by Nature. Struct. Bond 2014, 160, 89-114.
    (9) Sugiura, Y.; Kuwahara, J.; Nagasawa, T.; Yamada, H. Nitrile hydratase. The first non-heme iron enzyme with a typical low-spin iron(III)-active center. J. Am. Chem. Soc. 1987, 109, 5848-5850.
    (10) Bridget A. Brennan, J. G. C., D. Bruce Chase, Ivan M. Turner, Jr., and Mark J. Nelson. Resonance Raman Spectroscopy of Nitrile Hydratase, a Novel Iron. Biochemistry 1996, 35, 10068-10077.
    (11) Noguchi, T.; Nojiri, M.; Takei, K.-i.; Odaka, M.; Kamiya, N. Protonation Structures of Cys-Sulfinic and Cys-Sulfenic Acids in the Photosensitive Nitrile Hydratase Revealed by Fourier Transform Infrared Spectroscopy. Biochemistry 2003, 42, 11642-11650.
    (12) Kovacs, J. A. Synthetic Analogues of Cysteinate-Ligated Non-Heme Iron and Non-Corrinoid Cobalt Enzymes. Chem. Rev. 2004, 104, 825-848.
    (13) Lugo-Mas, P.; Taylor, W.; Schweitzer, D.; Theisen, R. M.; Xu, L.; Shearer, J.; Swartz, R. D.; Gleaves, M. C.; DiPasquale, A.; Kaminsky, W.; Kovacs, J. A. Properties of Square-Pyramidal Alkyl-Thiolate FeIII Complexes, Including an Analogue of the Unmodified Form of Nitrile Hydratase. Inorg. Chem. 2008, 47, 11228-11236.
    (14) Beissel, T.; BQger, K. S.; Voigt, C.; Wieghardt', K. (1,4,7-T~s(4-tert-butyl-2-mercaptobenzyl)-1,4,7-~azacyclononane)iroa(m): A Model for the IronSulfur Center in Nitrile Hydratase from Bredbacterium, sp. . Inorg. Chem. 1993, 32, 124-126
    (15) Ellison, J. J.; Nienstedt, A.; Shoner, S. C.; David Barnhart; Cowen, J. A.; Kovacs, J. A. Reactivity of Five-Coordinate Models for the Thiolate-Ligated Fe Site of Nitrile Hydratase. J. Am. Chem. Soc 1998, 120, 5691-5700.
    (16) Shoner, S. C.; Barnhart, D.; Kovacs, J. A. A Model for the Low-Spin, Non-Heme, Thiolate-Ligated Iron Site of Nitrile Hydratase. Inorg. Chem. 1995, 38, 616-617.
    (17) Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. Effect of Carboxamido N Coordination to Iron on the Redox Potential of Low-Spin Non-Heme Iron Centers with N,S Coordination:  Relevance to the Iron Site of Nitrile Hydratase. Inorg. Chem. 1998, 37, 1138-1139.
    (18) Heinrich, L.; Mary-Verla, A.; Li, Y.; Vaissermann, J.; Chottard, J.-C. Cobalt(III) Complexes with Carboxamido-N and Sulfenato-S or Sulfinato-S Ligands Suggest that a Coordinated Sulfenate-S is Essential for the Catalytic Activity of Nitrile Hydratases. Eur. J. Inorg. Chem. 2001, 2203-2206.
    (19) Hopmann, K. H. Full Reaction Mechanism of Nitrile Hydratase: A Cyclic Intermediate and an Unexpected Disulfide Switch. Inorg. Chem. 2014, 53, 2760-2762.
    (20) Martinez, S.; Wu, R.; Sanishvili, R.; Liu, D.; Holz, R. The Active Site Sulfenic Acid Ligand in Nitrile Hydratases Can Function as a nucleophile. J. Am. Chem. Soc. 2014, 136, 1186-1189.
    (21) Camara, J. M.; Rauchfuss, T. B. Mild Redox Complementation Enables H2 Activation by [FeFe]-Hydrogenase Models. J. Am. Chem. Soc 2011, 133, 8098-8101.
    (22) Morvan, D.; Capon, J.-F.; Gloaguen, F. d. r.; Goff, A. L.; Marchivie, M.; Michaud, F.; Schollhammer, P.; Talarmin, J.; Yaouanc, J.-J. N-Heterocyclic Carbene Ligands in Nonsymmetric Diiron Models of Hydrogenase Active Sites. Organometallics 2007, 26, 2042-2052.
    (23) Barton, B. E.; Whaley, C. M.; Rauchfuss, T. B.; Grayk, D. L. Nickel-Iron Dithiolato Hydrides Relevant to the [NiFe]-Hydrogenase Active Site. J. Am. Chem. Soc 2009, 131, 6942-6943.
    (24) Han, Z.; Shen, L.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R. Nickel Pyridinethiolate Complexes as Catalysts for the Light-DrivenProduction of Hydrogen from Aqueous Solutions in Noble-Metal-Free Systems. J. Am. Chem. Soc 2013, 135, 14659-14669.
    (25) McNamara, W. R.; Han, Z.; Yin, C.-J.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R. Cobalt-dithiolene complexes for the photocatalytic and electrocatalytic reduction of protons in aqueous solutions. Proceedings of the National Academy of Sciences 2012, 109(39), 15594-15599.
    (26) Gan, L.; Groy, T. L.; Tarakeshwar, P.; Mazinani, S. K. S.; Shearer, J.; Mujica, V.; Jones, A. K. A Nickel Phosphine Complex as a Fast and Efficient Hydrogen Production Catalyst. J. Am. Chem. Soc 2015, 137, 1109-1115.
    (27) Roy, S.; Mazinani, S. K. S.; Groy, T. L.; Gan, L.; Tarakeshwar, P.; Mujica, V.; Jones, A. K. Catalytic Hydrogen Evolution by Fe(II) Carbonyls Featuring a Dithiolate and a Chelating Phosphine. Inorg. Chem. 2014, 53, 8919-8929.
    (28) Jonas, R. T.; Stack, T. D. P. C-H Bond Activation by a Ferric Methoxide Complex:  A Model for the Rate-Determining Step in the Mechanism of Lipoxygenase. J. Am. Chem. Soc 1997, 119, 8566-8567.
    (29) Addison, A. W.; Rao, T. N. Synthesis, Structure, and Spectroscopic Properties of Copper( 11) Compounds containing Nitrogen-Sulphur Donor Ligands ; the Crystal and Molecular Structure of Aqua[l,7-bis(N-methylbenzimidazol-2'-yl)- 2,6-dithiaheptane]copper(ii) Perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1349-11356.
    (30) Moon, D.; Lah, M. S. The Effect of Ligand Charge on the Coordination Geometry of an Fe(III) Ion:  Five- and Six-Coordinate Fe(III) Complexes of Tris(2-benzimidazolylmethyl)amine. Inorg. Chem. 2002, 41, 4708-4714.
    (31) O'Keefe, B. J.; Breyfogle, L. E.; Hillmyer, M. A.; Tolman, W. B. Mechanistic Comparison of Cyclic Ester Polymerizations by Novel Iron(III)−Alkoxide Complexes:  Single vs Multiple Site Catalysis. J. Am. Chem. Soc 2002, 124, 4384-4393.
    (32) Weyhermüller, T.; Wagner, R.; Chaudhuri, P. Asymmetrically Dibridged Diiron(III) Complexes withAminebis(phenoxide)-Based Ligands for a Magnetostructural Study. Eur. J. Inorg. Chem. 2011, 2011, 2457-2557.
    (33) Roelfes, G.; Lubben, M.; Chen, K.; Ho, R. Y. N.; Meetsma, A.; Genseberger, S.; Hermant, R. M.; Hage, R.; Mandal, S. K.; Jr, V. G. Y.; Zang, Y.; Kooijman, H.; Spek, A. L.; Jr, L. Q.; Feringa, B. L. Iron Chemistry of a Pentadentate Ligand That Generates a Metastable Fe(III)-OOH
    Intermediate. Inorg. Chem. 1999, 38, 1929-1963.
    (34) Li, M.; Bonnet, D.; Bill, E.; Neese, F.; Weyhermüller, T.; Blum, N.; Sellmann, D.; Wieghardt, K. Tuning the Electronic Structure of Octahedral Iron Complexes [FeL(X)] (L = 1-Alkyl-4,7-bis(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane, X = Cl, CH3O, CN, NO). The S = 1/2 ⇌ S = 3/2 Spin Equilibrium of [FeLPr(NO)]. Inorg. Chem. 2002, 41, 3444-3456.
    (35) Kerber, W. D.; Perez, K. A.; Ren, C.; Siegler, M. A. Speciation of Ferric Phenoxide Intermediates during the Reduction of Iron(III)-μ-Oxo Dimers by Hydroquinone. Inorg. Chem. 2014, 53, 11507-11516.
    (36) Khusnutdinova, J. R.; Luo, J.; Rath, N. P.; Mirica, L. M. Late First-Row Transition Metal Complexes of a Tetradentate Pyridinophane Ligand: Electronic Properties and Reactivity Implications. Inorg. Chem. 2013, 52, 3920-3932.
    (37) Yamaguchi, S.; Kumagai, A.; Funahashi, Y.; Jitsukawa, K.; *, H. M. An Accurately-Constructed Structural Model for an Active Site of Fe-Containing Superoxide Dismutases (Fe-SODs). Inorg. Chem. 2003, 42, 7698-7700.
    (38) Ortega-Villar, N. A.; Muñoz, M. C.; Real, J. A. [FeIII(bztpen)(OCH3)](PF6)2: Stable Methoxide–Iron(III) Complex Exhibiting Spin Crossover Behavior in the Solid State. Eur. J. Inorg. Chem. 2010, 5563-5567.
    (39) Chang, Y.-H.; Chan, P.-M.; Tsai, Y.-F.; Lee, G.-H.; Hsu, H.-F. Catalytic Reduction of Hydrazine to Ammonia by a Mononuclear Iron(II) Complex on a Tris(thiolato)phosphine Platform. Inorg. Chem. 2014, 53, 664-666.
    (40) Nguyen, D. H.; Hsu, H.-F.; Millar, M.; Koch, S. A. Nickel(II) Thiolate Complex with Carbon Monoxide and Its Fe(II) Analog: Synthetic Models for CO Adducts of Nickel-Iron-Containing Enzymes. J. Am. Chem. Soc. 1996, 118, 8963-8964.
    (41) Hsu, H.-F.; Koch, S. A.; Popescu, C. V.; Munck, E. Chemistry of Iron Thiolate Complexes with CN- and CO. Models for the [Fe(CO)(CN)2] Structural Unit in Ni-Fe Hydrogenase Enzymes. J. Am. Chem. Soc. 1997, 119, 8371-8372.

    無法下載圖示 校內:2021-04-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE