簡易檢索 / 詳目顯示

研究生: 沈奕辰
Shen, Yi-Chen
論文名稱: 利用時間派屈網模式提昇批次製程失誤診斷性能的方法
Enhancing Diagnostic Performance in Batch Processes with Petri-Net Representation of Time
指導教授: 張珏庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 142
中文關鍵詞: 派屈網失誤診斷批次製程
外文關鍵詞: Petri nets, fault diagnosis, batch processes
相關次數: 點閱:105下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般而言,若與常見的連續製程比較,批次製程中的非穩態操作步驟較為複雜,造成操作過程中意外事故產生的機率相對提高,因此失誤診斷也會較為困難。本論文將以批次製程為對象,採用派屈網模型來表示考慮時間的失誤傳播機制,並據以改善文獻中已存在之診斷器建構步驟,具體言之本論文中提出了過去研究缺乏的感測器故障模式,且發展出新的診斷效能提昇策略 (包括計時器及額外驅動設備的設置方法),以便達到可以分辨多重失誤情境的目標。

    Due to the inherent complexity of unsteady-state operations, the probabilities of accidents in batch processes are high and the corresponding diagnosis tasks are quite difficult. In this work, the standard untimed Petri nets are used to model the dynamic fault propagation mechanisms for batch operations over a finite time horizon and, also, to improve the existing procedure for dianoser construction. Specifically, the following new features are developed in this research to enhance the diagnoser performance during multi-failure scenarios:
    1. A generalized Petri net has been proposed to characterize sensors and their failures;
    2. Several revamp strategies have been proposed to upgrade any given system by incorporating emergency steps in SFC, and by introducing additional timers, sensors and actuation devices into the P&ID.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目的 3 1.4 章節與組織 3 第二章 派屈網模式的建立方法 4 2.1 派屈網模式 4 2.2 建模方法 7 2.2.1 系統描述 7 2.2.2 控制器模式 9 2.2.3 設備元件模式 10 2.2.4 系統時間 12 2.2.5 故障機制 16 2.3 動態模擬 19 2.4 站區及渡閘分類 25 第三章 診斷器之演算及建立 26 3.1 診斷器建立步驟 26 3.2 診斷器節點之列舉過程 26 3.3 傳播及終止函數 30 3.4 診斷器性能評估 37 第四章 診斷器效能提升策略 40 4.1 計時器的應用 40 4.2 額外監測感應器 64 4.3額外操作步驟 69 4.4額外驅動設備 72 4.5案例討論 78 第五章 結論與展望 91 參考文獻 92 附錄A 96 附錄B 138

    1. Isermann, R., Process fault-detection based on modeling and estimation methods - a survey. Automatica 1984, 20, (4), 387-404.
    2. Venkatsubramanian, V.; Rengaswamy, R.; Yin, K.; Kavuri, S. N., A review of process fault detection and diagnosis part i: quantitative model-based methods. Computers & Chemical Engineering 2003, 27, (3), 293-311.
    3. Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S. N., A review of process fault detection and diagnosis part ii: quantitative model and search strategies. Computers & Chemical Engineering 2003, 27, (3), 313-326.
    4. Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S. N.; Yin, K., A review of process fault detection and diagnosis part iii: process history based methods. Computers & Chemical Engineering 2003, 27, (3), 327-346.
    5. Cassandras, C. G.; Lafortune, S., Introduction to Discrete Event Systems. Kluwer Academic Publisher: Boston, 1999.
    6. Brandin, B. A.; Wonham, W. M., Supervisory control of timed discrete-event systems. Ieee Transactions on Automatic Control 1994, 39, (2), 329-342.
    7. Berthomieu, B.; Diaz, M., Modeling and verification of time-dependent systems using time petri nets. Ieee Transactions on Software Engineering 1991, 17, (3), 259-273.
    8. Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D., Diagnosability of discrete-event systems. Ieee Transactions on Automatic Control 1995, 40, (9), 1555-1575.
    9. Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D. C., Failure diagnosis using discrete-event models. Ieee Transactions on Control Systems Technology 1996, 4, (2), 105-124.
    10. Ushio, T., Onishi, I., Okuda, K., Fault detection based on petri net models with faulty behaviors. In Proceedings of IEEE International Conference on System, Man and Cybernetics, October 1998; Vol. 5, p 113.
    11. Murata, T., Petri nets - properties, analysis and applications. Proceedings of the Ieee 1989, 77, (4), 541-580.
    12. Adamyan, A.; He, D., Sequential failure analysis using counters of petri net models. Ieee Transactions on Systems Man and Cybernetics Part a-Systems and Humans 2003, 33, (1), 1-11.
    13. Cabasino, M. P.; Giua, A.; Seatzu, C., Fault detection for discrete event systems using petri nets with unobservable transitions. Automatica 2010, 46, (9), 1531-1539.
    14. Lefebvre, D.; Delherm, C., Diagnosis of des with petri net models. Ieee Transactions on Automation Science and Engineering 2007, 4, (1), 114-118.
    15. Wu, Y. Q.; Hadjicostis, C. N., Algebraic approaches for fault identification in discrete-event systems. Ieee Transactions on Automatic Control 2005, 50, (12), 2048-2053.
    16. Miyagi, P. E.; Riascos, L. A. M., Modeling and analysis of fault-tolerant systems for machining operations based on petri nets. Control Engineering Practice 2006, 14, (4), 397-408.
    17. Adamyan, A.; He, D., Analysis of sequential failures for assessment of reliability and safety of manufacturing systems. Reliability Engineering & System Safety 2002, 76, (3), 227-236.
    18. Jiang, S. B.; Huang, Z. D.; Chandra, V.; Kumar, R., A polynomial algorithm for testing diagnosability of discrete-event systems. Ieee Transactions on Automatic Control 2001, 46, (8), 1318-1321.
    19. Jiroveanu, G.; Boel, R. K., A distributed approach for fault detection and diagnosis based on time petri nets. Mathematics and Computers in Simulation 2006, 70, (5-6), 287-313.
    20. Schullerus, G.; Supavatanakul, P.; Krebs, V.; Lunze, J., Modelling and hierarchical diagnosis of timed discrete-event systems. Mathematical and Computer Modelling of Dynamical Systems 2006, 12, (6), 519-542.
    21. Basile, F.; Chiacchio, P.; De Tommasi, G., An efficient approach for online diagnosis of discrete event systems. Ieee Transactions on Automatic Control 2009, 54, (4), 748-759.
    22. Cui, J.; Wang, S., A model-based online fault detection and diagnosis strategy for centrifugal chiller systems. International Journal of Thermal Sciences 2005, 44, (10), 986-999.
    23. Ramirez-Trevino, A.; Ruiz-Beltran, E.; Rivera-Rangel, I.; Lopez-Mellado, E., Online fault diagnosis of discrete event systems. a petri net-based approach. Ieee Transactions on Automation Science and Engineering 2007, 4, (1), 31-39.
    24. Renganathan, K.; Bhaskar, V., An observer based approach for achieving fault diagnosis and fault tolerant control of systems modeled as hybrid petri nets. Isa Transactions 2011, 50, (3), 443-453.
    25. Chen, Y. C.; Yeh, M. L.; Hong, C. L.; Chang, C. T., Petri-net based approach to configure online fault diagnosis systems for batch processes. Industrial & Engineering Chemistry Research 2010, 49, (9), 4249-4268.
    26. Bui Thanh, C.; Klaudel, H.; Pommereau, F., Petri nets with causal time for system verification. Electronic Notes in Theoretical Computer Science 2003, 68, (5), 85-100.
    27. Pommereau, F.; Devillers, R.; Klaudel, H., Efficient reachability graph representation of petri nets with unbounded counters. Electronic Notes in Theoretical Computer Science 2009, 239, 119-129.
    28. Lunze, J.; Schroder, J., Sensor and actuator fault diagnosis of systems with discrete inputs and outputs. Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics 2004, 34, (2), 1096-1107.
    29. Shannon, C. E., A mathematical theory of communication. The Bell System Technical Journal 1948, 27, (379-423), 623-656.

    下載圖示 校內:2012-08-17公開
    校外:2012-08-17公開
    QR CODE