簡易檢索 / 詳目顯示

研究生: 呂侑憲
Lu, Yu-Hsien
論文名稱: 含裂縫條板接合半平面功能梯度壓電材料之破壞問題
Mode III Fracture Problem for a Cracked Functionally Graded Piezoelectric Layer Bonded to a Substrate
指導教授: 褚晴暉
Chue, Ching-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 65
中文關鍵詞: 破壞問題裂縫功能梯度壓電材料
外文關鍵詞: crack, Functionally graded piezoelectric materials, fracture problem
相關次數: 點閱:94下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目的在探討接合半平面之含單一裂縫功能梯度壓電無限條板破壞問題。以材料之極化方向及外加負載簡化壓電材料之本構方程式,並以Fourier積分轉換法將不同邊界問題轉換為奇異積分方程組,再利用Gauss-Chebyshev定理及Chebyshev多項式將其表示為代數聯立方程組,並藉電腦輔助計算應力強度因子及電位移強度因子之數值解。藉由改變裂縫長度、位置及不同材料非均質參數,以觀察前述各項對強度因子之影響。

    The fracture problem of a cracked functionally graded piezoelectric layer bonded to a substrate is discussed in this thesis. Due to the poling direction of the piezoelectric materials, applied antiplane shear loading and the inplane electric loading, the constitutive equation is simplified. A system of singular integral equation is derived by using the Fourier integral transform. These equations are then reduced to algebraic simultaneous equations with the aid of Gauss-Chebyshev theorem and Chebyshev polynomials. The numerical solutions of stress and electric displacement intensity factors can be obtained by solving the above equations and the effects of crack length, crack position and different nonhomogeneous parameters upon the intensity factors can be discussed.

    摘要                        I 摘要                        I Abstract                      II 誌謝                        III 目錄                        IV 圖目錄                       VI 符號說明                      VIII 第一章 緒論                    1 1.1 前言                      1 1.2 文獻回顧                    3 1.3 本論文分析問題簡介               4 1.4 本文架構                    4 第二章 基本公式推導                6 2.1 壓電材料本構方程式基本理論           6 2.2 壓電材料裂縫面邊界條件假設           8 2.3 含單一嵌入式裂縫條板接合半平面梯度壓電材料問題 11 2.4 問題退化                    30 第三章 數值運算法                 34 3.1 Gauss-Chebyshev積分式與Chebyshev多項式     34 3.2 本問題之數值逼近方法簡化            39 第四章 結果與討論                 43 4.1 數值收斂性                   43 4.2 兩相同均質材料                 44 4.3 兩相同梯度材料                 47 4.4 梯度含裂縫條板結合均質半平面          50 4.5 均質含裂縫條板接合梯度半平面          53 4.6 梯度含裂縫條板接合梯度半平面          55 第五章 結論                    58 參考文獻                      59 附錄A                       62 附錄B                       64

    [1] Lee, W. Y., Bae, Y. W., Berndt, C. C., Erdogan, F., Lee, Y. D. and Mutasim, Z., 1996. The concept of functionally gradient materials for advanced thermal barrier coating applications: a review. Journal of the American Ceramic Society 79.
    [2] 王保林,杰才,幸,2003。 非均材料力。科出版社,北京市。
    [3] ,2001。 力失效。清大出版社,北京市。
    [4] Cherradi, N., Kawasaki, A. and Gasik, M., 1994. Worldwide trends in functional gradient materials research and development. Composites Engineering 4, 883-894.
    [5] Noda, N., 1999. Thermal stresses in functionally graded materials. Journal of Thermal Stresses 22, 477-512.
    [6] Suo, Z., Kuo, C. M., Barnett, D. M. and Willis, J. R., 1992. Fracture mechanics for piezoelectric ceramics. Journal of the Mechanics and Physics of Solids 40, 739-765.
    [7] Li, C. and Weng, G. J., 2002. Antiplane crack problem in functionally graded piezoelectric materials. Transactions of the ASME, Journal of Applied Mechanics 69, 481-488.
    [8] Chue, C. H. and Ou, Y. L., 2004. Mode III crack problems for two bonded functionally graded piezoelectric materials. International Journal of Solids and Structures 42, 3321-3337.
    [9] Chue, C. H. and Ou, Y. L., 2006. Mode III eccentric crack in a functionally graded piezoelectric strip. International Journal of Solids and Structures 43, 6148-6164.
    [10] Tuma, J. J., 1979. Engineering Mathematics Handbook. Definitions, theorems, formulas, tables. Second Edition, McGraw-Hill International, USA.
    [11] Muskhelishvili, N. I., 1953. Singular Integral Equations. Noordhoff International Publishing Groningen, The Netherlands.
    [12] Erdogan, F, Gupta, G. D. and Cook, T. S., 1973. Numerical solution of singular integral equations. In Mechanics of Fracture 1: Method of analysis and solution of crack problem, edited by G. C. Sih, Chapter 7, Noordhoff International Publishing, Leyden, The Netherlands.
    [13] Rivlin, T. J., 1974. The Chebyshev polynomials. Wiley, New York.
    [14] Erdogan, F. and Gupta G. D., 1972. Quarterly of Applied Mathematics 30, 525-534.
    [15] Li, X. F. and Tang, G. J., 2003. Electroelastic analysis of an interface anti-plane shear crack in a layered piezoelectric plate. International Journal of Engineering Science 41, 1405-1422.
    [16] Li, X. F. and Duan, X. Y., 2001. Closed-form solution for a mode-III crack at the mid-plane of a piezoelectric layer. Mechanics Research Communications 28, 703-710.
    [17] 王保林,2003. 材料及其构的裂力。國防工業出版社,北京市。
    [18] Chen, Z. T. and Worswick, M. J., 2000. Antiplane mechanical and inplane electric time-dependent load applied to two coplanar cracks in piezoelectric ceramic material. Theoretical and Applied Fracture Mechanics 33, 173-184.
    [19] Pak, Y. E., 1990. Crack extension force in a piezoelectric material. Transaction of the ASME, Journal of Applied Mechanics 57, 647-653.
    [20] Erdogan, F., 1985. The crack problem for bonded nonhomogeneous materials under antiplane shear loading. Transactions for the ASME, Journal of Applied Mechanics 52, 823-828.
    [21] Erdogan, F. and Biricikoglu, V., 1973. Two bonded half planes with a crack going through the interface. International Journal of Engineering Science 11, 745-766.

    下載圖示 校內:立即公開
    校外:2007-07-25公開
    QR CODE