簡易檢索 / 詳目顯示

研究生: 鄭義銘
Teh, Yih-Ming
論文名稱: 苯胺寡聚物模板與不同形態聚苯胺合成
Synthesis of Oligoanline Template and the Morphology of Polyaniline
指導教授: 陳志勇
Chen, Chuh-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 65
中文關鍵詞: 聚苯胺形態防腐蝕化學氧化聚合
外文關鍵詞: Polyaniline, morphology, anticorrosion, Chemical oxidative polymerization
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用苯胺的氧化聚合機制,在弱酸的聚合環境配合block copolymer F127使苯胺氧化產物通過自組裝的方式形成具有特殊形態的模板該形態為葉片狀、花狀以及樹枝狀,進一步利用FTIR及UV-vis鑑定分子結構並發現這些具有特殊結構的寡聚物含有吩嗪的結構造成分子鏈段缺陷從而影響聚苯胺的導電性質造成不導電的結果,並由MALDI-TOF得知片狀,樹枝分子量分別為530、671。最後通過在酸性環境裡將不同形態的模板合成導電聚苯胺,得到具有2.75S/cm葉片狀、1.27S/cm花狀、3.21S/cm樹枝狀的聚苯胺改善了不導電的缺點。最後利用不同形態葉片狀、花狀、樹枝狀、線狀混摻環氧樹脂製備防蝕塗料,發現線狀、樹枝狀、葉片狀及花狀聚苯胺對塗料鈍化層防蝕效率提升分別為82.481%、83.802% 、65.816%及62.703%

    One of the common ways to enhance the efficiency of anti-corrosion is integrating polyaniline into the layer of epoxy coating on metals. However, the current literature usually adopts polyaniline without considering its morphology. In this study, we aim to investigate whether the controlled morphology of polyaniline will affect the efficiency of carbon steel in anti-corrosion. Since the morphology of polyaniline cannot be controlled in acidic solution, we first synthesize oligoaniline in weak acidic solution via chemical oxidative polymerization. By adopting surfactant F127, nanostructure-based plate-like, flower-like, and branch-like oligoaniline are synthesized successfully. The molecular structures verified with FTIR and UV-vis, nonetheless, are found to contain phenazine structures that will affect the conductivity properties of the oligoaniline. Hence, we use the synthesized oligoaniline as templates to develop polyaniline in the acidic solution. As shown in the results, the conductivity rate of plate-like, flower-like, and branch-like oligoaniline are improved to 2.75S/cm, 1.27S/cm, and 3.21S/cm, respectively. In conclusion, the results show that the rates of anti-corrosion for branch-like, plate-like, and flower-like polyaniline are 83. 80%, 65.82%, and 62.70% respectively.

    中文摘要 I Abstract II Extended Abstract III 致謝 XVII 第一章 緒論 1 第二章 文獻回顧 3 2-1 導電高分子 3 2-2 聚苯胺 4 2-3 導電理論 6 2-4 聚苯胺之合成 8 2-5 化學氧化聚合機制 9 2-6 聚苯胺形態研究 15 2-7 防蝕技術 23 第三章 實驗內容 27 3-1 實驗藥品 27 3-2 實驗儀器 27 3-3 實驗步驟 28 3-4 分析方法 31 第四章 結果與討論 33 4-1 不同形態聚苯胺合成 33 4-1-1 片狀形態 33 4-1-2 花狀形態 36 4-1-3 樹枝形態 38 4-1-4 線狀形態 40 4-2 苯胺寡聚物模板合成不同形態聚苯胺 44 4-3 分子結構及分子量分析 48 4-3-5 FT-IR與UV-vis 48 4-4 不同形態聚苯胺腐蝕速率測試 56 第五章 結論 59 第六章 參考文獻 60

    Wang, J.S., et al., A novel strategy for the synthesis of polyaniline nanostructures with controlled morphology. Reactive & Functional Polymers, 2008. 68(10): p. 1435-1440.
    2. Wan, M.X., A template-free method towards conducting polymer nanostructures. Advanced Materials, 2008. 20(15): p. 2926-2932.
    3. Feng, J., X.L. Jing, and Y. Li, Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures. Chemical Papers, 2013. 67(8): p. 891-908.
    4. Chiang, C.K., et al., Electrical Conductivity in Doped Polyacetylene. Physical Review Letters, 1977. 39(17): p. 1098-1101.
    5. Chiang, C.K., et al., Electrical Conductivity in Doped Polyacetylene. Physical Review Letters, 1978. 40(22): p. 1472-1472.
    6. 徐武軍, 高分子材料導論. 2012, 五南. p. 276.
    7. Green, A.G. and A.E. Woodhead, CCXLIII.—Aniline-black and allied compounds. Part I. J. Chem. Soc., Trans., 1910. 97(0): p. 2388-2403.
    8. Green, A.G. and A.E. Woodhead, CXVII.—Aniline-black and allied compounds. Part II. J. Chem. Soc., Trans., 1912. 101(0): p. 1117-1123.
    9. De Surville, R., et al., Electrochemical chains using protolytic organic semiconductors. Electrochimica Acta, 1968. 13(6): p. 1451-1458.
    10. Macdiarmid, A.G., et al., Polyaniline: Protonic Acid Doping to the Metallic Regime. Molecular Crystals and Liquid Crystals, 1985. 125(1): p. 309-318.
    11. Macdiarmid, A.G., et al., Polyaniline: a new concept in conducting polymers. Synthetic Metals, 1987. 18(1): p. 285-290.
    12. Yu, Y., et al., Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion. Synthetic Metals, 2005. 150(3): p. 271-277.
    13. do Nascimento, G.M., et al., Spectroscopic characterization of polyaniline formed in the presence of montmorillonite clay. Polymer, 2006. 47(17): p. 6131-6139.
    14. Hwang, H.R., et al., Sensing behavior of the polypyrrole and polyaniline sensor for several volatile organic compounds. Metals and Materials International, 2003. 9(3): p. 287-291.
    15. Clark, N.B. and L.J. Maher, Non-contact, radio frequency detection of ammonia with a printed polyaniline sensor. Reactive and Functional Polymers, 2009. 69(8): p. 594-600.
    16. Pang, S., G. Li, and Z. Zhang, Synthesis of Polyaniline-Vanadium Oxide Nanocomposite Nanosheets. Macromolecular Rapid Communications, 2005. 26(15): p. 1262-1265.
    17. Ding, X., et al., Micelle-assisted synthesis of polyaniline/magnetite nanorods by in situ self-assembly process. Journal of Colloid and Interface Science, 2008. 320(1): p. 341-345.
    18. Chiang, J.-C. and A.G. MacDiarmid, ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals, 1986. 13(1-3): p. 193-205.
    19. 王利祥, 导电聚合物聚苯胺的研究进展——Ⅰ. 合成, 链结构和凝聚态结构. 应用化学, 1990. 5: p. 000.
    20. Macdiarmid, A.G., et al., Polyaniline - Interconversion of Metallic and Insulating Forms. Molecular Crystals and Liquid Crystals, 1985. 121(1-4): p. 173-180.
    21. Trchova, M., et al., Evolution of polyaniline nanotubes: the oxidation of aniline in water. J Phys Chem B, 2006. 110(19): p. 9461-8.
    22. Aleahmad, M., H.G. Taleghani, and H. Eisazadeh, Effect of Synthesis Conditions on the Morphology of Polyaniline. Asian Journal of Chemistry, 2010. 22(9): p. 7353-7360.
    23. Asturias, G.E., et al., The oxidation state of “emeraldine” base. Synthetic Metals, 1989. 29(1): p. 157-162.
    24. Pron, A., et al., The effect of the oxidation conditions on the chemical polymerization of polyaniline. Synthetic Metals, 1988. 24(3): p. 193-201.
    25. Ayad, M.M. and M.A. Shenashin, Polyaniline film deposition from the oxidative polymerization of aniline using K2Cr2O7. European Polymer Journal, 2004. 40(1): p. 197-202.
    26. Stejskal, J. and R.G. Gilbert, Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 2002. 74(5): p. 857-867.
    27. Basniwal, R.K., et al., Development of a Cholesterol Biosensor by Chronoamperometric Deposition of Polyaniline-Ag Nanocomposites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013. 62(9): p. 493-498.
    28. Kalaji, M., L. Nyholm, and L.M. Peter, Chronopotentiometric studies of polyaniline films. Journal of Electroanalytical Chemistry, 1992. 325(1): p. 269-284.
    29. Zotti, G., S. Cattarin, and N. Comisso, Electrodeposition of polythiophene, polypyrrole and polyaniline by the cyclic potential sweep method. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987. 235(1): p. 259-273.
    30. Ćirić-Marjanović, G., Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synthetic Metals, 2013. 177: p. 1-47.
    31. Boyland, E., D. Manson, and P. Sims, 729. The preparation of o-aminophenyl sulphates. Journal of the Chemical Society (Resumed), 1953: p. 3623.
    32. Behrman, E.J., The Persulfate Oxidation of Phenols and Arylamines (The Elbs and the Boyland–Sims Oxidations), in Organic Reactions. 2004, John Wiley & Sons, Inc.
    33. Marjanovic, B., I. Juranic, and G. Ciric-Marjanovic, Revised mechanism of Boyland-Sims oxidation. J Phys Chem A, 2011. 115(15): p. 3536-50.
    34. Koval’chuk, E.P., et al., Co-polymers of aniline and nitroanilines. Part I. Mechanism of aniline oxidation polycondensation. Materials Chemistry and Physics, 2001. 69(1): p. 154-162.
    35. Behrman, E.J., Studies on the reaction between peroxydisulfate ions and aromatic amines. Boyland-Sims oxidation. Journal of the American Chemical Society, 1967. 89(10): p. 2424-2428.
    36. Wei, Y., et al., Polymerization of Aniline and Alkyl Ring-Substituted Anilines in the Presence of Aromatic Additives. Journal of Physical Chemistry, 1990. 94(19): p. 7716-7721.
    37. Wei, Y., et al., A Study of the Mechanism of Aniline Polymerization. Journal of Polymer Science Part a-Polymer Chemistry, 1989. 27(7): p. 2385-2396.
    38. Wei, Y., R. Hariharan, and S.A. Patel, Chemical and Electrochemical Copolymerization of Aniline with Alkyl Ring-Substituted Anilines. Macromolecules, 1990. 23(3): p. 758-764.
    39. XU, H., W. YAN, and J. FENG, Development of synthesis and polymerization mechanism of polyaniline. Chemical Industry and Engineering Progress, 2008.
    40. Ćirić-Marjanović, G., et al., Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. Synthetic Metals, 2008. 158(5): p. 200-211.
    41. Stejskal, J., I. Sapurina, and M. Trchová, Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 2010. 35(12): p. 1420-1481.
    42. Pałys, B. and P. Celuch, Redox transformations of polyaniline nanotubes: Cyclic voltammetry, infrared and optical absorption studies. Electrochimica Acta, 2006. 51(20): p. 4115-4124.
    43. Qu, M., et al., Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties. Langmuir, 2008. 24(8): p. 4185-9.
    44. Pan, L.J., et al., Synthesis of Polyaniline Nanotubes with a Reactive Template of Manganese Oxide. Advanced Materials, 2007. 19(3): p. 461-+.
    45. Zhou, C., J. Han, and R. Guo, Dilute anionic surfactant solution route to polyaniline rectangular sub-microtubes as a novel nanostructure. J Phys Chem B, 2008. 112(16): p. 5014-9.
    46. Zhong, W.B., et al., Synthesis of large-area three-dimensional polyaniline nanowire networks using a "soft template". Macromolecular Rapid Communications, 2005. 26(5): p. 395-400.
    47. Han, J., G.P. Song, and R. Guo, Nanostructure-based leaf-like polyaniline in the presence of an amphiphilic triblock copolymer. Advanced Materials, 2007. 19(19): p. 2993-+.
    48. Stejskal, J., et al., The genesis of polyaniline nanotubes. Polymer, 2006. 47(25): p. 8253-8262.
    49. Stejskal, J., et al., Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 2008. 41(10): p. 3530-3536.
    50. Konyushenko, E.N., et al., Polyaniline nanotubes: conditions of formation. Polymer International, 2006. 55(1): p. 31-39.
    51. Zhou, C., J. Han, and R. Guo, Polyaniline fan-like architectures of rectangular sub-microtubes synthesized in dilute inorganic Acid solution. Macromol Rapid Commun, 2009. 30(3): p. 182-7.
    52. Huang, J., Syntheses and applications of conducting polymer polyaniline nanofibers. Pure and Applied Chemistry, 2006. 78(1).
    53. Zhang, X.Y., et al., Nanofibers of polyaniline synthesized by interfacial polymerization. Synthetic Metals, 2004. 145(1): p. 23-29.
    54. Yan, X.B., et al., NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization. Sensors and Actuators B-Chemical, 2007. 123(1): p. 107-113.
    55. Guan, H., et al., Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochimica Acta, 2010. 56(2): p. 964-968.
    56. Chiou, N.R. and A.J. Epstein, Polyaniline nanofibers prepared by dilute polymerization. Advanced Materials, 2005. 17(13): p. 1679-+.
    57. Huang, J. and R.B. Kaner, The intrinsic nanofibrillar morphology of polyaniline. Chem Commun (Camb), 2006(4): p. 367-76.
    58. Tang, Q., et al., Templateless self-assembly of highly oriented polyaniline arrays. Chem Commun (Camb), 2009(16): p. 2166-7.
    59. Wang, X.C., et al., Controlled synthesis of linear polyaniline tubes and dendritic polyaniline fibers with stearic acid. Polymer Bulletin, 2008. 60(1): p. 1-6.
    60. Gao, Y., et al., Polyaniline nanotubes prepared using fiber mats membrane as the template and their gas-response behavior. Journal of Physical Chemistry C, 2008. 112(22): p. 8215-8222.
    61. Wang, J.S., et al., Preparation of polyaniline microplates via a novel template-free method. Synthetic Metals, 2009. 159(15-16): p. 1583-1588.
    62. Zhou, C.Q., J. Han, and R. Guo, Controllable synthesis of polyaniline multidimensional architectures: From plate-like structures to flower-like superstructures. Macromolecules, 2008. 41(17): p. 6473-6479.
    63. Bardal, E., Corrosion and Protection. 2007, Springer-Verlag London.
    64. Ross, T.K. and J. Wolstenholme, Anti-corrosion properties of zinc dust paints. Corrosion Science, 1977. 17(4): p. 341-351.
    65. Wei, T., F. Yan, and J. Tian, Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy. Journal of Alloys and Compounds, 2005. 389(1): p. 169-176.
    66. Tsivilis, S., et al., Properties and behavior of limestone cement concrete and mortar. Cement and Concrete Research, 2000. 30(10): p. 1679-1683.
    67. Deshpande, P.P., et al., Conducting polymers for corrosion protection: a review. Journal of Coatings Technology and Research, 2014. 11(4): p. 473-494.
    68. El-Sanabary, A.A., et al., Preparation and evaluation of some new corrosion inhibitors in varnishes. Anti-Corrosion Methods and Materials, 2001. 48(1): p. 47-58.
    69. Radhakrishnan, S., N. Sonawane, and C.R. Siju, Epoxy powder coatings containing polyaniline for enhanced corrosion protection. Progress in Organic Coatings, 2009. 64(4): p. 383-386.
    70. Ren, T., Q. Xue, and H. Wang, A study of the tribological properties of S-(1H-benzotriazol-1-yl)-methyl, O,O'-dialkyldithiophosphates as additives in liquid paraffin. Wear, 1994. 173(1): p. 167-170.
    71. Allen J. Bard, L.R.F., Electrochemical Methods: Fundamentals and Application. 2000, John Wiley & Sons: New York.
    72. Laslau, C., Z. Zujovic, and J. Travas-Sejdic, Theories of polyaniline nanostructure self-assembly: Towards an expanded, comprehensive Multi-Layer Theory (MLT). Progress in Polymer Science, 2010. 35(12): p. 1403-1419.
    73. Sapurina, I. and J. Stejskal, The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 2008. 57(12): p. 1295-1325.
    74. Stejskal, J., I. Sapurina, and M. Trchova, Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 2010. 35(12): p. 1420-1481.
    75. Moon, D.K., et al., Preparation of Polyaniline by Oxidation of Aniline Using H2o2 in the Presence of an Iron(Ii) Catalyst. Makromolekulare Chemie-Macromolecular Chemistry and Physics, 1992. 193(7): p. 1723-1728.
    76. Sun, Z., et al., Catalytic oxidization polymerization of aniline in an H2O2?Fe2+ system. Journal of Applied Polymer Science, 1999. 72(8): p. 1077-1084.
    77. Surwade, S.P., et al., Catalyst-free synthesis of oligoanilines and polyaniline nanofibers using H(2)O(2). J Am Chem Soc, 2009. 131(35): p. 12528-9.
    78. Yasuda, A. and T. Shimidzu, Chemical and electrochemical analyses of polyaniline prepared with FeCl3. Synthetic Metals, 1993. 61(3): p. 239-245.
    79. Huang, J. and R.B. Kaner, A general chemical route to polyaniline nanofibers. J Am Chem Soc, 2004. 126(3): p. 851-5.
    80. Yang, X., et al., Anticorrosion performance of polyaniline nanostructures on mild steel. Progress in Organic Coatings, 2010. 69(3): p. 267-271.

    無法下載圖示 校內:2022-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE